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This paper is dedicated to derive and study binary systems of identical corotating dyonic black holes 
separated by a massless strut—two 5-parametric corotating binary black hole models endowed with both 
electric and magnetic charges—where the dyonic black holes carrying equal/opposite electromagnetic 
charges in the first/second model satisfy the extended Smarr formula for the mass including the magnetic 
charge as a fourth conserved parameter.
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1. Introduction

It is well-known that any black hole (BH) solution fulfilling the Einstein-Maxwell equations in stationary spacetimes can be described by 
only three conserved parameters: the mass, electric charge, and angular momentum [1]. This statement is called the no-hair conjecture [2–
4] and a Kerr-Newman BH solution [5] is the one depicted by these physical parameters. Obviously, one may bear in mind the addition of 
the magnetic charge as a fourth conserved parameter since it is also conserved in Einstein-Maxwell theory [6]. In this context, a duality 
rotation (DR) studied long time ago by Carter [7] seems to be the easiest path to add the magnetic charge into the Kerr-Newman solution 
in order to describe a rotating dyon –a particle containing both electric and magnetic charges [8]–, which will satisfy an extended Smarr 
formula for the mass [9]. It should be mentioned that in this approach there exists no Dirac string (DS) (or monopole hair) joined to the 
BH.

On the other hand, Tomimatsu [10] via Komar integrals [11] provided simple formulas that permits the derivation of the mass formula 
for multi-connected horizons. In particular, in a binary BH system he found that in the absence of the global net magnetic charge there 
appears a DS linking the BHs, in the way of magnetic flux. In this physical scenario the global magnetic charge is eliminated once each 
BH is equipped with an individual magnetic charge opposite in sign but carrying the same magnitude. Naturally that, the DS vanishes if 
there are no magnetic charges in the solution [10] recovering the Kerr-Newman BH description. It is worthwhile to stress the fact that 
there exist two approaches that allow us to add the magnetic charge into each BH; the DR [7] and the inclusion of the DS into the mass 
[10,12].

Following Tomimatsu’s approach, in [13–15] has been studied the contribution of the DS into the mass formula for two counterrotating 
dyonic BHs held apart by a massless strut [16,17], founding that each individual angular momentum suffers additional rotation provided 
by the presence of the DS, in the form J − Q H Q B . However, in a later paper published by Clément and Gal’tsov [12] it was shown that 
Tomimatsu’s formulas [10] are incorrect in the presence of both electric and magnetic charges, owing to the fact that the DS affects only 
the horizon mass and not the horizon angular momentum as was reported earlier in [13–15], where it is necessary to adopt a constant 
(or gauge) in the magnetic potential in order to give equal weights to balance the horizon mass and angular momentum.

The present paper has the main goal to use Carter’s proposal [7] on the DR to derive the dyonic extensions of two corotating Kerr-
Newman binary BH models previously studied in [18]. These extended models are well represented by five physical arbitrary parameters: 
mass MH , angular momentum J H , electric charge Q H , magnetic charge B H , and a relative distance R , where all the thermodynamical 
properties contained inside the extended Smarr formula have been derived in a concise form. In addition, it is demonstrated that after the 
DR is applied, the physical Komar parameters {MH , Q H , B H , J H } are conserved without the need of adding any specific constant in the 
magnetic potential, contrary to the claim made in [19]. In this regard, is also added a short description on the correct use of this gauge 
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with the aim to include the contribution of the DS in the horizon mass, by using once again the results of [14] and the ones derived 
within this work for corotating systems.

2. Corotating dyonic binary black holes

Let us begin this section by introducing the following Ernst equations [20]:

(
ReE + |�|2

)
�E = (∇E + 2�̄∇�) · ∇E,(

ReE + |�|2
)

�� = (∇E + 2�̄∇�) · ∇�,
(1)

that are equivalent to Einstein-Maxwell field equations in stationary axisymmetric spacetimes, where (E, �) are complex potentials given 
by E = f −|�|2 + i� and � = −A4 + i A′

3. We notice that Eq. (1) remain invariant under DR, in which � might be replaced by �eiα , where 
α is a constant duality angle closely linked to the magnetic charge. On the other hand, the line element defining stationary axisymmetric 
spacetimes is given by [21]

ds2 = f −1
[

e2γ (dρ2 + dz2) + ρ2dϕ2
]
− f (dt − ωdϕ)2, (2)

where f (ρ, z), ω(ρ, z), and γ (ρ, z) are metric functions that can be obtained once one is able to solve following differential equations

4γ,ρ = ρ f −2
[
|E,ρ + 2�̄�,ρ |2 − |E,z + 2�̄�,z|2

]
− 4ρ f −1(|�,ρ |2 − |�,z|2),

2γ,z = ρ f −2Re
[
(E,ρ + 2�̄�,ρ)(Ē,z + 2�̄�,z)

] − 4ρ f −1Re(�̄,ρ�,z),

ω,ρ = −ρ f −2Im(E,z + 2��̄,z), ω,z = ρ f −2Im(E,ρ + 2��̄,ρ). (3)

Then we have that the explicit knowledge of the Ernst potentials (E, �) fulfilling Eq. (1), will be helpful to solve Eq. (3). In order 
to derive the Ernst potentials as well as the metric functions in the entire space (ρ, z) one can make use of Sibgatullin’s method [22], 
where it is necessary to adopt first a specific form of the Ernst potentials on the symmetry axis (the axis data). In [18] we have used the 
following axis data for asymptotically flat spacetimes

E(0, z) = z2 − 2(M + iq)z + 2� − R2/4 − σ 2 − 2qo(Q /M) + iδ

z2 + 2(M − iq)z + 2� − R2/4 − σ 2 + 2qo(Q /M) − iδ
,

�(0, z) = 2(Q z + qo)

z2 + 2(M − iq)z + 2� − R2/4 − σ 2 + 2qo(Q /M) − iδ
,

σ =
√

� − 4
[|qo|2 − (Q /M)2q2

o
] − δ2

R2 − 4�
, � = M2 − Q 2 − q2, qo = qo + ibo, (4)

with the main objective to describe corotating binary systems of identical Kerr-Newman BHs [5]. From the aforementioned Eq. (4) after 
applying the Hoenselaers-Perjés procedure [23,24], it is possible to obtain the first Simon’s multipoles [25], where the total mass, total 
electric charge, and total angular momentum of the binary system are represented by 2M , 2Q , and 4Mq − δ, respectively, while the total 
electromagnetic dipole moment is given as 2

[
qo + i(bo +2qQ )

]
. Moreover, R defines a separation distance between the sources (see Fig. 1), 

which may be BHs if σ 2 ≥ 0 or hyperextreme sources when σ 2 < 0.
In this framework, the Ernst potentials, Kinnersley potential �2 [26] as well as the metric functions in the whole spacetime were 

obtained in Ref. [18]; these explicitly are

E = � + 

� − 
, � = χ

� − 
, �2 = F

� − 
, f = |�|2 − ||2 + |χ |2

|� − |2 , ω = 4q+ Im
[
(� − )G − χI

]
|�|2 − ||2 + |χ |2 ,

e2γ = |�|2 − ||2 + |χ |2
64σ 4 R4κ2

o r1r2r3r4
,

� =2σ 2
[

R2κo(r1 + r2)(r3 + r4) + 4a(r1 − r3)(r2 − r4)
]
+ 2R2

[
κo(2� − σ 2) − a

]
(r1 − r2)(r3 − r4)

+ 2iR

{(
2qRe(s+) + Im(p+)

)[
R(r1 − r2)(r3 − r4) − 2σ

(
r1r4 − r2r3 + 4σ r3r4

)]

+ qκo

[
r1

(
R2r3 − κor4

) − r2
(
κor3 − R2r4

) − 8σ 2r3r4

]}
,

 = 4σ R (Mo − bχ+) , F = (4q+ iz)χ − iI, χ = −4σ R (Q o + 2Qχ+) , o = Rχ− − 2σχs + 2χ1+,
2
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G =2z + 8σ 2
{

R
[

2
(
Re(a) − 2|qo|2

) + Q 2κo

]
(r1r2 − r3r4) + 2iqR2κo(r2r3 + r1r4) + 2i

[
RIm(a) + Q ξ0 − 4q|qo|2

]

× (r1 − r3)(r2 − r4)

}
− 4R2

{
σ

[
2a − (R − 2σ)

(
2(R + 2iq)s+ + p+

)]
+ i

(
Q ξo + 2Q boκo − 4q|qo|2

)}
(r1 − r2)(r3 − r4)

+ 2σ R

{
4R

(
2κo� − Re(a)

)
r4 +

[
Q (4qo + Q R)κo + 4R|qo|2

]
(r3 + r4)

}
(r1 − r2)

+ 2σ R

{
4R

(
2κo� − Re(a)

)
r2 −

[
Q (4qo − Q R)κo − 4R|qo|2

]
(r1 + r2)

}
(r3 − r4) + 4Mσ R

(
κoχ+ + 2Rχ1− + 4σχp

)
− 4bσ R(Rχ− + 2σχs) − 8σ R(Q b + 2MQ)

[
2q̄o

(
r1 − r2 + r3 − r4

) + Q κo(r1 − r2 − r3 + r4)
]
,

I = A
[

4σ 2(r1 − r3)(r2 − r4) − R2(r1 − r2)(r3 − r4)
]
+ Rκ−

[
B+κor1 − B−Rr2

]
r4 + Rκ+

[
B−κor2 − B+Rr1

]
r3

− 16σ 2 R
{[

M(R + 2σ)(κ+ + 2Q R) − B+qo

]
r3r4 − Rκo(2MQ+ Q b)

}
+ 8Qσ R(χ1+ + σχs)

+ 2σ R
[

Q
(
2R2 − 8� + κo

) + 8iqQ
]
χ+ + 12σ R2Qχ− + 8Q σ R(Rχ1− + 2σχp),

χ± = s+r1 − s−r2 ± (s̄−r3 − s̄+r4), χ1± = p+r1 + p−r2 ± (p̄−r3 + p̄+r4), χs = s+r1 + s−r2 + s̄−r3 + s̄+r4,

χp = p+r1 − p−r2 + p̄−r3 − p̄+r4, a = (R + 2iq)p+ − s+
[
s+ − (R + 2iq)2], b = −2qo(Q /M) + i(δ − 4Mq),

A = 4M
[(

2Q+ Q (R − 2σ)
)

s+ + 2Q p+
]
+ B+

[
Q

(
R2 − 4�

) − 2(R + 2iq)qo

]
, κ± = 2qo − Q (R ± 2σ), κo = R2 − 4σ 2,

B± =
[

Rs± ± p± + 2Q
(
2q̄o + Q (R ± 2σ)

)]
/M, p± = −σ(R2 − 4�) ± i

[
2Mδ + 4bo Q − (R + 2iq)Im(s±)

]
,

s± = 2� ± σ R + iq(R ± 2σ), ξo = 4Q
[

Mδ + 2bo Q + q(� − σ 2)
]
− (2bo + qQ )(R2 − 4�), Q = qo + 2iqQ ,

r1,4 = (R − 2σ)r1,4, r2,3 = (R + 2σ)r2,3, r1,2 =
√

ρ2 + (z − R/2 ∓ σ)2, r3,4 =
√

ρ2 + (z + R/2 ∓ σ)2, (5)

where rn = √
ρ2 + (z − αn)2 are the distances from the value αn defining the location of the source to any point (ρ, z) outside the 

symmetry axis as shown in Fig. 1. On the other hand, it is necessary to impose the next axis condition

ω
(
ρ = 0, |z| < Re(α2)

)
= 0, (6)

with the aim to disconnect the region in between sources. Once is used the metric function ω from Eq. (5) such a condition can be 
represented by a very simple quadratic equation for solving

8qP0b2
o + 2P0(2Q bo + Mδ)(R2 − 4�) − [

2qso − (R + 2M)δ
]
(R2 − 4�)2 + 4q

{
(P0 − 2so)

[
2q2

o

(
1 − 2(Q /M)2) − δ2

]
+4soq2

o

}
= 0,

P0 = (R + 2M)2 + 4q2, so = M(R + 2M) − Q 2. (7)

On the other hand, Eq. (5) permits us to calculate the physical Komar parameters [11] for BHs via the amended Tomimatsu formulae 
[10,12]

MH = − 1

8π

∫
H

ω�,z dϕdz − M S
A, Q H = 1

4π

∫
H

ωA′
3,z dϕdz, B H = 1

4π

∫
H

ωA4,z dϕdz,

J H = − 1

8π

∫
H

ω

[
1 + ω�,z

2
− Ã3 A′

3,z

]
dϕdz − ωH M S

A

2
, (8)

where ωH is the constant value for ω at the horizon while Ã3 = A3 +ωA4, being A3 the magnetic potential obtainable from the real part 
of �2 in the following way:

A3 = Re(�2) = −4qA4 − z A′
3 + Im

(
I

� − 

)
. (9)

Furthermore A4 = −Re(�), and M S
A is a boundary term related to the presence of the DS connecting the BHs that is computed by 

virtue of

M S
A = − 1

4π

∫
H

(A′
3 A3),zdϕdz. (10)

The expressions contained in Eq. (8) can be rearranged to derive the Smarr formula [9] for the horizon mass of each BH [12],

MH = κ S + 2� J H + �H
E Q H = σ + 2� J H + �H

E Q H , (11)

4π

3
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Fig. 1. Identical Kerr-Newman-type sources on the symmetry axis: (a) BHs for σ 2 > 0; (b) hyperextreme sources if σ → iσ (or σ 2 < 0); (c) extreme BHs where σ = 0.

where � = 1/ωH is the angular velocity and �H
E = −AH

4 − �AH
3 is the electric potential evaluated on the horizon. It is worth noting that 

we have written down the formula for the mass Eq. (11) with two different aspects since the area of the horizon S and surface gravity κ
are related to the half-length horizon σ by means of [10,27]

S = 4πσ

κ
, κ =

√
−�2e−2γ H

, (12)

where γ H is the value acquired by the metric function γ over the horizon. Due to the fact that each thin rod representing the BH horizon 
in Fig. 1(a) contains the same length, without loss of generality, it is possible to calculate the Komar parameters by means of the values 
H = {−σ ≤ z − R/2 ≤ σ , 0 ≤ ϕ ≤ 2π, ρ → 0}, that define the upper BH. After using the Ernst potentials and metric functions derived in 
Ref. [18], the horizon mass MH and electromagnetic charge Q H + iB H assume the form

MH = M + 2qo(Q /M)P0 R(R2 − 4�)[
(R + 2M)(R2 − 4�) − 4qδ

]2 + 64q2q2
o(Q /M)2

− M S
A,

Q H + iB H = Q + 2
P0(qo + ibo) + i Q

(
q(R2 − 4�) + (R + 2M)

[
δ + 2iqo(Q /M)

])
(R + 2M)(R2 − 4�) − 4q

[
δ + 2iqo(Q /M)

] , (13)

whereas the lower BH defines its corresponding horizon mass once is performed the change qo → −qo in Eq. (13), while its electromag-
netic charge is 2Q − Q H − iB H . In Ref. [18], the axis condition Eq. (7) has been combined together with Eq. (13) in order to derive two 
corotating electrically charged models; i.e., two binary systems of equal corotating Kerr-Newman BHs endowed with identical or opposite 
electric charges and separated by a massless strut, in which a DS binding the BHs does not exist since the absence of individual magnetic 
charges was also established. However, the contribution of the DS into the horizon mass might be considered if B H �= 0, where after 
setting qo = 0 in Eqs. (7) and (13) eventually one gets the result

δ = 2(R2 − 4�)
[
MqP0 + (R + 2M)τ

]
(R2 + 2M R + 4q2)P0 + 8qτ

, bo = − (R2 − 4�)
(
(2qQ H − B H R)P0 + 4Q Hτ

)
2
[
(R2 + 2M R + 4q2)P0 + 8qτ

] ,

τ = q(Q 2
H − B2

H ) − B H Q H (R + 2M), Q = Q H , (14)

that permits the description of a two-body system of corotating dyonic BHs connected by a DS, where the upper and lower constituents 
have electromagnetic charges equal to Q H + iB H and Q H − iB H respectively. Lengthy calculations eventually give us simple expressions 
for M S

A , �H
E , and �, namely

M S
A = B Hε

(
B HL− Q HM
L2 +M2

)
, �H

E = Q H (R + 2σ)L− 2b0M
L2 +M2

, � = 2q

P0
+ εM

L2 +M2
,

ε = P0 R(R2 − 4�)

(R2 + 2M R + 4q2)P0 + 8qτ
, L = M R + 2� + (R + 2M)σ , M = δ + q(R + 2σ). (15)

A second model emerges immediately from Eqs. (7) and (13) by doing first Q = 0, to obtain

δ = 2q(R2 − 4�1)
[
M P0 − |Q|2(R + 2M)

]
(R2 + 2M R + 4q2)P0 − 8q2|Q|2 , qo = QR(R2 − 4�1)P0

2
[
(R2 + 2M R + 4q2)P0 − 8q2|Q|2

] ,

�1 = M2 − q2, Q = Q H + iB H , |Q|2 = Q 2
H + B2

H , (16)

thus having a binary system that contains opposite electromagnetic charges, where now it is possible to get
4
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M S
A = 2B H

(
boN − qoM
N 2 +M2

− 2qQ H

P0

)
, �H

E = 2
qoN − boM
N 2 +M2

, � = 2q

P0
+ 2(qo/Q H )M

N 2 +M2
,

N = M R + 2�1 + (R + 2M)σ . (17)

In both models, it should be observed the contribution of the DS via the magnetic charge B H , where regardless of which one may be 
considered, the upper and lower dyonic BHs are equipped with a magnetic charge B H and −B H respectively. That each source carries a 
magnetic charge of opposite sign is one of the main characteristics of dyonic binary BH models joined by a DS, when the global monopolar 
magnetic charge has been eliminated from the configuration [18]. It is important to comment that both dyonic BHs having a DS in between 
sources will satisfy the Smarr formula Eq. (11), in which their horizon mass is MH = M − M S

A .

2.1. Physical meaning of the DS into the horizon mass

At this point, we would like to discuss a little bit on some physical implications of M S
A within the Smarr formula. As has been 

recently proved by Clément and Gal’tsov [12], the correctness of Tomimatsu’s formulas fails at the moment of including magnetic charges, 
due mainly to the fact that the horizon mass MH in Tomimatsu’s approach does not contain the extra component M S

A . For that reason 
Tomimatsu’s expression for the horizon mass is determined by [10]

MH = σ + 2� J H + �H
E Q H + M S

A, (18)

which looks different than the one displayed in Eq. (11). However, if we want to consider the contribution of the DS provided by the extra 
term M S

A into the horizon mass we need to include a constant1 in the magnetic potential, namely

A3new = K0 + A3, (19)

and it creates changes in the terms M S
A and �H

E in the form

M S
Anew = − 1

4π

∫
H

(A′
3 A3new),zdϕdz = M S

A − K0�Q H , �H
Enew = −AH

4 − �AH
3new = �H

E − K0�. (20)

In order to explain how this constant might be used, and with the purpose to amend the discrepancy committed in [13–15], we are 
going to appeal first to the results of the paper [14] concerning to an oppositely electromagnetic charged two-body system of identical 
counterrotating BHs, where its thermodynamical properties were explicitly calculated; they read

M S
A = B H (B HφH − Q H�), �H

E = Q HφH − B H�,

� = μ

2

(R + 2σ)
√

X − 1

M[R + 2σ − (R − 2M)X] − μ|Q|2 , φH = μ

2

R + 2σ − (R − 2M)X

M[R + 2σ − (R − 2M)X] − μ|Q|2 ,

σ =
√

X
(
M2 − |Q|2μ) + R2

4
(1 − X), μ = R − 2M

R + 2M
, (21)

where X is an auxiliary variable defined as

X = q2
o + b2

o

(R/2 − M)2(Q 2
H + B2

H )
, (22)

which in the lack of rotation turns out to be equal to the unit. Due to the fact that the mass formula Eq. (11) now takes the form

MH = M − M S
Anew = σ + 2� J H + �H

Enew Q H , (23)

it is quite natural to deduce from Eqs. (20)-(21) that K0 may be chosen as K0 = −B H . Therefore, Eq. (23) is further simplified as follows

MH ≡ M − B2
HφH = σ + 2� J H + Q 2

HφH . (24)

The substitution of σ from Eq. (21) into Eq. (24) allows us to obtain

X = 1 + 4 J 2
H[

M(R + 2M) + |Q|2
]2

, (25)

thus having the explicit form of σ

σ =
√√√√M2 −

(
|Q|2 + J 2

H

[
(R + 2M)2 + 4|Q|2][

M(R + 2M) + |Q|2]2

)
R − 2M

R + 2M
. (26)

1 This constant gives a symmetric weight for each DS joined to the BH, providing a balance of mass and angular momentum. For a single dyonic Kerr-Newman BH the 
magnetic potential might be written as A3new = K0 + B H (1 − y) − a(1 − y2)A4, where a ≡ J H /M and (x, y) are prolate coordinates. The choice K0 = −B H is equivalent to 
carry out C = 0 as was done in Ref. [12].
5
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Notice that there is a distinction between the horizon mass MH and the parameter M as has been pointed out earlier by Clément 
and Gal’tsov [12]; both are identical only whether the boundary term Ms

A is killed due mainly to the fact that magnetic charges are not 
present. So, we have that in the limit R → ∞, the horizon mass MH behaves as

MH = lim
R→∞

[
M − B2

HφH
]

= M − B2
H

M + σ

(M + σ)2 + ( J H/M)2
,

σ =
√

M2 − |Q|2 − J 2
H/M2, (27)

recovering the expression for one isolated dyonic Kerr-Newman BH joined to a DS [12]. In this counterrotating sector, J H defines half of 
the total angular momentum of the system since it does not contain an extra contribution coming from the DS. On the other hand, the 
addition of the same constant K0 = −B H in the first corotating model with identical electric charge produces

M S
Anew = B H

(
B HεL

L2 +M2
+ 2qQ H

P0

)
, �H

Enew = Q H (R + 2σ)L− (2bo − B Hε)M
L2 +M2

+ 2qB H

P0
,

J H = 2Mq− δ

2
− Q H B H , (28)

while its addition in the one carrying opposite electromagnetic charges generates the result

M S
Anew = 2B H

(
boN

N 2 +M2
− qQ H

P0

)
, �H

Enew = 2

(
qoN

N 2 +M2
+ qB H

P0

)
,

J H = 2Mq− δ

2
, (29)

where it can be checked straightforwardly from these corotating models that Eq. (27) is recovered at an infinite separation distance, 
where q = J H/M . The reader should further note that in the binary system with identical charge, J H equates the half of the total angular 
momentum only at large distances.

It should be mentioned here, that contrary to the statement provided by the authors in Ref. [19], there is no need to add any constant 
to the magnetic potential A3 when a DR procedure has been applied to include the magnetic charge inside the Kerr-Newman solution. 
These authors [19] have combined two approaches; the DR studied many years ago by Carter [7] and the addition of a constant in 
the magnetic potential A3,2 with the objective to prove the correctness of Tomimatsu’s formulas in the presence of both electric and 
magnetic charges. However, their procedure cannot be correct since there was an error in such formulas that might lead to physical and 
mathematical inconsistencies. To prove the last statement on the no need of adding a constant in A3, for simplicity and without loss of 
generality one might use once again the expressions of Eq. (21)3 after eliminating the magnetic charge, thus having

M S
A = 0, �H

E = Q HφH ,

� = μ

2

(R + 2σ)
√

X − 1

M[R + 2σ − (R − 2M)X] − μQ 2
H

, φH = μ

2

R + 2σ − (R − 2M)X

M[R + 2σ − (R − 2M)X] − μQ 2
H

,

σ =
√

X
(
M2 − Q 2

Hμ
) + R2

4
(1 − X), (30)

where now the mass formula Eq. (11) reads

MH ≡ M = σ + 2� J H + Q 2
HφH . (31)

Then we have that a DR procedure (Q H → Q H + iB H and Q 2
H → Q 2

H + B2
H ) extends the conventional mass formula by adding the 

magnetic charge as a fourth conserved parameter as follows

MH = σ + 2� J H + �H
E L Q H + �H

M AG B H ,

�H
E L = Q HφH , �H

M AG = B HφH , (32)

with σ having the same aspect as shown in Eq. (26), but the main distinction is that the parameter M is now representing the horizon 
mass MH . Hence, no DS exists in between BHs.

An heuristic point of view on the electromagnetic charge conservation is reached by killing first the magnetic charge with the condition 
[10]

1

4π

∫
H

ωA4,z dϕdz = − 1

4π

∫
H

A3,z dϕdz = 0, (33)

2 The constant value agrees with K0 = −B H (b0 = −B in [19]). However, a constant must be added to A3 only when the contribution of the DS into the horizon mass 
should be taken into account [12].

3 These formulas were obtained in Ref. [14] without adding a constant in the magnetic potential A3.
6



I. Cabrera-Munguia Physics Letters B 811 (2020) 135945
which means that both potentials A4 and A3 will take the same value in the limits defining the BH horizon. Therefore, the DS joined to 
the BH is eliminated, and later on, the DR � → �eiα is applied, where the real and imaginary components of the new potential �eiα take 
the aspect

A4new = A4 + B H

Q H
A′

3, A′
3new = − B H

Q H
A4 + A′

3, (34)

whereby α = arctan(B H/Q H ). Observe that the case B H = 0 recovers the original potential �. Thus, we write the electric and magnetic 
charges as follows:

Q Hnew = 1

4π

∫
H

ωA′
3new,z dϕdz, B Hnew = 1

4π

∫
H

ωA′
4new,z dϕdz, (35)

after the substitution of Eq. (34) into Eq. (35) it is possible to restore the contribution of the magnetic charge, namely

Q Hnew = 1

4π

∫
H

ω

(
− B H

Q H
A4 + A′

3

)
,z

dϕdz = Q H .

B Hnew = 1

4π

∫
H

ω

(
A4 + B H

Q H
A′

3

)
,z

dϕdz = Q H

(
B H

Q H

)
= B H . (36)

The same idea depicted above can be worked out in order to prove that MH and J H are also conserved parameters under a DR, where 
we have that the new horizon mass and angular momentum assume the form

MHnew = M − M S
Anew = M − M S

A + B H

4π Q H

∫
H

(A4 A3),zdϕdz,

J Hnew = − 1

8π

∫
H

ω

[
1 + ω�,z

2
− Ã3 A′

3new,z

]
dϕdz − ωH M S

Anew

2
, (37)

where MHnew = MH = M and J Hnew = J H once Eq. (33) is fulfilled to eliminate the DS. We now turn our attention to consider a DR in 
the solution [18] in order to derive two corotating dyonic binary BH models with no DS in between.

2.2. Corotating dyonic BHs endowed with identical electromagnetic charges

An absence of magnetic charge (B H = 0) in Eq. (14) derives the following result

δ = 2q(R2 − 4�)
[
M P0 + Q 2

H (R + 2M)
]

(R2 + 2M R + 4q2)P0 + 8q2 Q 2
H

, bo = − qQ H (R2 − 4�)
(

P0 + 2Q 2
H

)
(R2 + 2M R + 4q2)P0 + 8q2 Q 2

H

, (38)

where the extra term M S
A has been eliminated and for such a reason MH = M . In this respect, the DR can be performed by doing only the 

following changes Q H → Q H + iB H and Q 2
H → Q 2

H + B2
H in the Ernst potentials on the symmetry axis given above in Eq. (4). The result is

E(0, z) = z2 − 2(M + iq)z + 2�o − R2/4 − σ 2 + iδ

z2 + 2(M − iq)z + 2�o − R2/4 − σ 2 − iδ
, �(0, z) = 2(Qz + qo)

z2 + 2(M − iq)z + 2�o − R2/4 − σ 2 − iδ
, (39)

with

δ = 2q(R2 − 4�o)
[
M P0 + |Q|2(R + 2M)

]
(R2 + 2M R + 4q2)P0 + 8q2|Q|2 , qo = − iqQ(R2 − 4�o)

(
P0 + 2|Q|2)

(R2 + 2M R + 4q2)P0 + 8q2|Q|2 ,

�o = M2 − |Q|2 − q2. (40)

It should be pointed out that this procedure has added the magnetic charge B H as a fourth conserved parameter into the solution, 
where now the electromagnetic charge obtainable from Eq. (13) is given by

Q H + iB H = Q H + iB H + 2
P0(qo + ibo) + i(Q H + iB H )

(
q(R2 − 4�o) + (R + 2M)δ

)
(R + 2M)(R2 − 4�o) − 4qδ

, (41)

which is identically satisfied by the set of variables expressed lines above in Eq. (40). Similar to the upper dyonic BH, the lower constituent 
contains the same electromagnetic charge Q H + iB H . Once we have incorporated the magnetic charge B H , it follows that the Ernst 
potentials, Kinnersley potential �2, and metric functions read

E = � + 

� − 
, � = χ

� − 
, �2 = F

� − 
, f = |�|2 − ||2 + |χ |2

|� − |2 , ω = 4q+ Im
[
(� − )G − χI

]
|�|2 − ||2 + |χ |2 ,

e2γ = |�|2 − ||2 + |χ |2
4 4 2

,

64σ R κo r1r2r3r4

7
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� =2σ 2
[

R2κo(r1 + r2)(r3 + r4) + 4a(r1 − r3)(r2 − r4)
]
+ 2R2

[
κo(2�o − σ 2) − a

]
(r1 − r2)(r3 − r4)

+ 2iR

{(
2qRe(s+) + Im(p+)

)[
R(r1 − r2)(r3 − r4) − 2σ

(
r1r4 − r2r3 + 4σ r3r4

)]

+ qκo

[
r1

(
R2r3 − κor4

) − r2
(
κor3 − R2r4

) − 8σ 2r3r4

]}
,

 = 4σ R (Mo − bχ+) , F = (4q+ iz)χ − iI, χ = −4σ R (Qo + 2Qχ+) , o = Rχ− − 2σχs + 2χ1+,

G =2z + 8σ 2
{

R
[

2
(
Re(a) − 2|qo|2

) + |Q|2κo

]
(r1r2 − r3r4) + 2iqR2κo(r2r3 + r1r4) + 2i

[
RIm(a) +Qξ0 − 4q|qo|2

]

× (r1 − r3)(r2 − r4)

}
− 4R2

{
σ

[
2a − (R − 2σ)

(
2(R + 2iq)s+ + p+

)]
+ i

(
Qξo + 2iqoQ̄κo − 4q|qo|2

)}
(r1 − r2)(r3 − r4)

+ 2σ R2
{

4
(

2κo�o − Re(a)
)

r4 + [|Q|2κo + 4|qo|2
]
(r3 + r4)

}
(r1 − r2)

+ 2σ R2
{

4
(

2κo�o − Re(a)
)

r2 + [|Q|2κo + 4|qo|2
]
(r1 + r2)

}
(r3 − r4) + 4Mσ R

(
κoχ+ + 2Rχ1− + 4σ 2χp

)
− 4bσ R(Rχ− + 2σχs) − 8σ R(Qb + 2MQ)

[
2qo

(
r1 − r2 + r3 − r4

) +Qκo(r1 − r2 − r3 + r4)
]
,

I =A
[

4σ 2(r1 − r3)(r2 − r4) − R2(r1 − r2)(r3 − r4)
]
+ Rκ−

[
B+κor1 − B−Rr2

]
r4 − Rκ+

[
B+Rr1 − B−κor2

]
r3

− 16σ 2 R

{[
M(R + 2σ)(κ+ + 2QR) − B+qo

]
r3r4 − Rκo(2MQ+Qb)

}
+ 8Qσ R(χ1+ + σχs)

+ 2σ R
[
Q

(
2R2 − 8�o + κo

) + 8iqQ
]
χ+ + 12σ R2Qχ− + 8Qσ R(Rχ1− + 2σχp),

χ± = s+r1 − s−r2 ± (s̄−r3 − s̄+r4), χ1± = p+r1 + p−r2 ± (p̄−r3 + p̄+r4), χs = s+r1 + s−r2 + s̄−r3 + s̄+r4,

χp = p+r1 − p−r2 + p̄−r3 − p̄+r4, a = (R + 2iq)p+ − s+
[
s+ − (R + 2iq)2], b = i(δ − 4Mq), κo = R2 − 4σ 2,

A = 4M
[(

2Q+Q(R − 2σ)
)
s+ + 2Qp+

]
+ B+

[
Q

(
R2 − 4�o

) − 2(R + 2iq)qo

]
, κ± = 2qo −Q(R ± 2σ),

B± =
[

Rs± ± p± + 2Q
(
2qo +Q(R ± 2σ)

)]
/M, p± = −σ(R2 − 4�o) ± i

[
2Mδ + 4iQqo − (R + 2iq)Im(s±)

]
,

s± = 2�o ± σ R + iq(R ± 2σ), ξo = 4Q
[

Mδ − 2iqoQ+ q(�o − σ 2)
]
+ (2iqo − qQ)(R2 − 4�o), Q = qo + 2iqQ,

r1,4 = (R − 2σ)r1,4, r2,3 = (R + 2σ)r2,3, (42)

where the half-length parameter defining the BH horizon can be written as

σ =
√

�o − 4|qo|2 − δ2

R2 − 4�o
, (43)

which explicitly is

σ =

√√√√√�o +
4q2(R2 − 4�o)

[[
M P0 + |Q|2(R + 2M)

]2 − |Q|2(P0 + 2|Q|2)2
]

[
(R2 + 2M R + 4q2)P0 + 8q2|Q|2]2

. (44)

In this case the components of the extended mass formula Eq. (32), � and φH are given by

� = 2q

P0
+ P0 R(R2 − 4�o)

(R2 + 2M R + 4q2)P0 + 8q2|Q|2
(

M
L2

o +M2

)
, φH = (R + 2σ)Lo − 2(bo/Q H )M

L2
o +M2

,

Lo = M R + 2�o + (R + 2M)σ , (45)

and their combination with Eq.(̇44) defines the angular momentum from Eq. (32), to obtain

J H = 2Mq− q(R2 − 4�o)
[
M P0 + |Q|2(R + 2M)

]
(R2 + 2M R + 4q2)P0 + 8q2|Q|2 , (46)

which is nothing less than half of the total angular momentum; i.e., 2Mq − δ/2. In addition, we have that the area of the horizon S and 
surface gravity κ are expressed as

S

4π
= σ

κ
= L2

o +M2

R(R + 2σ)
. (47)

The conical singularity (or strut) along the line keeping apart the BHs from overlapping presents an angular deficit �ϕ = −8πF , 
where the interaction force F is computed with the aid of the formula F = (e−γs − 1)/4 [17,28], being γs the constant value for the 
metric function γ in the axis region in between sources. The result is
8
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F =
[
(M2 − |Q|2)P 2

0 − 4q2|Q|4](P0 − 8q2) − 16q2|Q|2
[(

M(R + 2M) − |Q|2)P0 − |Q|4
]

(R2 − 4�o)P 3
0

. (48)

The strut is massless because does not contribute to the total gravitational energy of the system. The force F → 0 at R → ∞, where 
Eqs. (44) and (46) permit us to recover the expression σ =

√
M2

H − |Q|2 − J 2
H/M2

H defining an isolated dyonic BH free of monopolar 
sources. Moreover, not taking into account large separation distances, the lack of a conical singularity is achieved when F = 0, and due 
to the fact that the numerator of F is a bicubic equation in the variable q, in principle this task can be done analytically. This matter 
clearly deserves further research in order to understand better the presence of ring singularities off the axis or other pathologies like 
closed time-like curves.

We end this subsection, by mentioning that the aforementioned expression of the force Eq. (48) will contain a different aspect if the 
DS is taken into account in the solution.

2.3. Corotating dyonic BHs endowed with opposite electromagnetic charges

The second charged model arises after setting B H = 0 in Eq. (16), thus having

δ = 2q(R2 − 4�1)
[
M P0 − Q 2

H (R + 2M)
]

(R2 + 2M R + 4q2)P0 − 8q2 Q 2
H

, qo = Q H R(R2 − 4�1)P0

2
[
(R2 + 2M R + 4q2)P0 − 8q2 Q 2

H

] , (49)

where now each BH contains an opposite electric charge. So, in this case the Ernst potentials on the symmetry axis after performing the 
DR are written as

E(0, z) = z2 − 2(M + iq)z + 2�1 − R2/4 − σ 2 + iδ

z2 + 2(M − iq)z + 2�1 − R2/4 − σ 2 − iδ
, �(0, z) = 2qo

z2 + 2(M − iq)z + 2�1 − R2/4 − σ 2 − iδ
, (50)

with δ and qo having the same aspect as in Eq. (16), but now M = MH since M S
A = 0. The electromagnetic charge derived from Eq. (13)

and satisfied by Eq. (16) reduces to

Q H + iB H = 2(qo + ibo)P0

(R + 2M)(R2 − 4�1) − 4qδ
. (51)

It is worthwhile to mention, that the lower dyonic BH is endowed with opposite electromagnetic charge; i.e., −Q H − iB H . Then, the 
Ernst and Kinnersley potentials, as well as the metric functions, have now the form

E = � + 

� − 
, � = χ

� − 
, �2 = F

� − 
, f = |�|2 − ||2 + |χ |2

|� − |2 , ω = 4q+ Im
[
(� − )G − χI

]
|�|2 − ||2 + |χ |2 ,

e2γ = |�|2 − ||2 + |χ |2
64σ 4 R4κ2

o r1r2r3r4
,

� =2σ 2
[

R2κo(r1 + r2)(r3 + r4) + 4a(r1 − r3)(r2 − r4)
]
+ 2R2

[
κo(2�1 − σ 2) − a

]
(r1 − r2)(r3 − r4)

+ 2iR

{(
2qRe(s+) + Im(p+)

)[
R(r1 − r2)(r3 − r4) − 2σ

(
r1r4 − r2r3 + 4σ r3r4

)]

+ qκo

[
r1

(
R2r3 − κor4

) − r2
(
κor3 − R2r4

) − 8σ 2r3r4

]}
,

 = 4σ R (Mo − bχ+) , F = (4q+ iz)χ − iI, χ = −8σ Rqoχ+, o = Rχ− − 2σχs + 2χ1+,

G =2z + 8σ 2

{
2R

(
Re(a) − 2|qo|2

)
(r1r2 − r3r4) + 2iqR2κo(r2r3 + r1r4) + 2i

[
RIm(a) − 4q|qo|2

]
(r1 − r3)(r2 − r4)

− 4R2
(
σ

[
2a − (R − 2σ)

(
2(R + 2iq)s+ + p+

)]
− 4iq|qo|2

)
(r1 − r2)(r3 − r4)

}

+ 8σ R2
[(

2κo�1 − Re(a)
)
r4 + |qo|2(r3 + r4)

]
(r1 − r2) + 8σ R2

[(
2κo�1 − Re(a)

)
r2 + |qo|2(r1 + r2)

]
(r3 − r4)

+ 4σ R

{
M

[
κoχ+ + 2Rχ1− + 4σχp − 8|qo|2(r1 − r2 + r3 − r4)

]
− b

(
Rχ− + 2σχs

)}
,

I =4qo

{
A
[

4σ 2(r1 − r3)(r2 − r4) − R2(r1 − r2)(r3 − r4)
]
+ R

[
B+

(
(R + 2σ)r4 − Rr3

)
r1 + B−

(
(R − 2σ)r3 − Rr4

)
r2

]

− 8σ 2 R
[(

M(R + 2σ) − B+
)

r3r4 − M Rko

]
+ 2σ R(χ1+ + σχs) + 4iqσ Rχ+ + 3σ R2χ−

}
,

χ± = s+r1 − s−r2 ± (s̄−r3 − s̄+r4), χ1± = p+r1 + p−r2 ± (p̄−r3 + p̄+r4), χs = s+r1 + s−r2 + s̄−r3 + s̄+r4,

χp = p+r1 − p−r2 + p̄−r3 − p̄+r4, a = (R + 2iq)p+ − s+
[
s+ − (R + 2iq)2], b = i(δ − 4Mq), κo = R2 − 4σ 2,

A = 2Ms+ − (R + 2iq)B+, B± = M(R ± 2σ) + iδ, p± = −σ(R2 − 4�1) ± i
[
2Mδ − (R + 2iq)Im(s±)

]
,

s± = 2�1 ± σ R + iq(R ± 2σ), r1,4 = (R − 2σ)r1,4, r2,3 = (R + 2σ)r2,3, (52)
9
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with σ having now the aspect

σ =

√√√√√�1 +
(R2 − 4�1)

[[
2q

(
M P0 − |Q|2(R + 2M)

)]2 − (|Q|R P0)2
]

[
(R2 + 2M R + 4q2)P0 − 8q2|Q|2]2

. (53)

On the other hand, the thermodynamical properties of the extended Smarr formula Eq. (32) become

� = 2q

P0
+ φH , φH = 2(qo/Q H )N

N 2 +M2
,

S

4π
= σ

κ
= N 2 +M2

R(R + 2σ)
, (54)

where they define the angular momentum of the horizon in the way

J H = 2Mq− q(R2 − 4�1)
[
M P0 − |Q|2(R + 2M)

]
(R2 + 2M R + 4q2)P0 − 8q2|Q|2 . (55)

Moreover, it is not difficult to show that the interaction force is given by

F =
(
M2 P 2

0 − 4q2|Q|4)(P0 − 8q2) + |Q|2[R2 P0 − 4q2(R2 − 4�1)
]

P0

(R2 − 4�1)P 3
0

. (56)

It is noteworthy that if the DS is not absent in the solution, the interaction force looks the same as in Eq. (56), nonetheless M �= MH . In 
the same manner as in the first case, the strut may be removed by solving another bicubic equation in terms of q. To finalize the section, 
we mention that if B H = 0, all the physical and thermodynamical features in both models are reduced to those ones defining corotating 
binary systems of identical Kerr-Newman BHs [18].

3. Concluding remarks

Following Carter’s approach [7], we have been able to apply a DR in two identical corotating Kerr-Newman binary BH models recently 
studied in [18] with the purpose to add individual magnetic charges to each BH. Therefore, each corotating BH is endowed with iden-
tical/opposite electromagnetic charge in the first/second configuration and satisfying a generalized Smarr formula for dyonic BHs. These 
models containing a conical singularity in between sources, are well represented by five physical arbitrary parameters {MH , J H , Q H , B H , R}
and they will be useful to provide further analytical studies of some astrophysical phenomena like geodesics, quasinormal modes or lens-
ing and shadow effects in the context of binary BHs, among others. It is worth remarking that the DR approach describes configurations 
free of DS joined to the BHs. On the other hand, we have also shown in both corotating dyonic models that the mass MH , angular mo-
mentum J H , and electromagnetic charge Q H + iB H are conserved parameters under DR and there is no necessity to add a gauge in the 
magnetic potential A3 as has been claimed in [19]. On the contrary, the addition of a gauge is only needed when the contribution of the 
DS into the horizon mass MH is introduced in order to balance each dyonic BH. In all the scenarios examined in this work, this gauge is 
a constant of value K0 = −B H that leads us to the correct description of an isolated BH joined to a DS previously studied by Clément and 
Gal’tsov [12].

We would like to point out that the metric for the extreme limit case (σ = 0) of corotating dyonic BHs has not been considered here 
since it can be easily derived from the formulas given in [18], where both electrically charged configurations were well defined. In fact, it 
should be mentioned that both dyonic configurations satisfy the Gabach-Clement identity [29] for extreme BHs with struts, namely

√
1 + 4Fext =

√
(8π J H )2 + (4π Q 2

H + 4π B2
H )2

Sext
, (57)

where Sext and Fext define the horizon area and the force in the extreme case, respectively. Due to the fact that the expression of the 
force contains the same aspect in both extreme and non-extreme configurations, because it does not depend on σ . For instance, in the 
identically electromagnetic charged model, we have that

Sext = 4π
(M R + 2�o)

2 + (δ + qR)2

R2
, (58)

and the substitution of Eqs. (46), (48), and (58) into Eq. (57) yields

�o +
4q2(R2 − 4�o)

[(
M P0 + |Q|2(R + 2M)

)2 − |Q|2(P0 + 2|Q|2)2
]

[
(R2 + 2M R + 4q2)P0 + 8q2|Q|2]2

= 0, (59)

which is exactly the condition σ = 0 on Eq. (44) for extreme dyonic BHs. Furthermore, one may proceed in the same manner for the 
oppositely dyonic charged configuration in order to derive once again the expression that arises from the condition σ = 0 imposed on 
Eq. (53).
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