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Abstract

Data plays a key role in the design of expert and intelligent systems and therefore,
data preprocessing appears to be a critical step to produce high-quality data and
build accurate machine learning models. Over the past decades, increasing atten-
tion has been paid towards the issue of class imbalance and this is now a research
hotspot in a variety of fields. Although the resampling methods, either by under-
sampling the majority class or by over-sampling the minority class, stand among
the most powerful techniques to face this problem, their strengths and weaknesses
have typically been discussed based only on the class imbalance ratio. However,
several questions remain open and need further exploration. For instance, the sub-
tle differences in performance between the over- and under-sampling algorithms
are still under-comprehended, and we hypothesize that they could be better ex-
plained by analyzing the inner structure of the data sets. Consequently, this paper
attempts to investigate and illustrate the effects of the resampling methods on the
inner structure of a data set by exploiting local neighborhood information, iden-
tifying the sample types in both classes and analyzing their distribution in each
resampled set. Experimental results indicate that the resampling methods that pro-
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duce the highest proportion of safe samples and the lowest proportion of unsafe
samples correspond to those with the highest overall performance. The signifi-
cance of this paper lies in the fact that our findings may contribute to gain a better
understanding of how these techniques perform on class-imbalanced data and why
over-sampling has been reported to be usually more efficient than under-sampling.
The outcomes in this study may have impact on both research and practice in the
design of expert and intelligent systems since a priori knowledge about the in-
ternal structure of the imbalanced data sets could be incorporated to the learning
algorithms.

Keywords: Class imbalance, Sample types, Resampling, Local neighborhood

1. Introduction

Organizations are nowadays focused on exploiting the vast amounts of data
generated from many sources and with multiple formats for competitive advan-
tage. To this end, expert and intelligent systems are developed to make decisions
based on insights extracted from the data sets. Since the potential of these systems
relies on the quality of data, preprocessing becomes one of the most critical and
effort-inducing stages in their development.

In many real-life applications, the data sets are typically imbalanced, which
has been described as a challenging problem and the subject of several research
efforts. A binary data set is said to be imbalanced if one of the classes is rep-
resented by a very small number of examples compared to the other class. By
convention, the examples of the minority class are labeled as positive and those of
the majority class are called negative.

It has been observed that class imbalance may cause an important deteriora-
tion of the performance attainable by most standard classifiers because they are
strongly biased towards the classification of the negative examples and are not
competent enough to classify the minority class correctly (Branco et al., 2016).
However, the poor accuracy of existing models on positive examples could be at-
tributed not only to class imbalance but also to a variety of factors, such as noisy
data, class overlapping, lack of density and small disjuncts (He & Garcia, 2009;
Jo & Japkowicz, 2004; López et al., 2013). This means that the class imbalance
may be not a problem by itself and countering class imbalance will not always
lead to an improvement in performance (Garcı́a et al., 2008; Japkowicz, 2003).

A large number of strategies have been proposed to deal with the class im-
balance problem, which can be mainly grouped into three categories (Haixiang
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et al., 2017; Krawczyk, 2016). One is to assign distinct costs to the misclassifi-
cations on each class in such a way that an error made on the minority class will
be more costly than an error made on the majority class. The second strategy is
to preprocess the imbalanced data, either by enlarging (over-sampling) the minor-
ity class and/or shrinking (under-sampling) the majority class until the classes are
approximately equally represented. The third group consists in internally biasing
the discrimination-based process to compensate for the class imbalance.

The resampling techniques have probably been the most investigated because
they are independent of the underlying classifier and can be easily implemented
for any problem (Estabrooks et al., 2004; Garcı́a et al., 2016; Weiss, 2004). The
level of imbalance is reduced in both over- and under-sampling algorithms, with
the assumption that a more balanced set should provide better classification re-
sults. However, these methods also present some weaknesses due to the artificial
alteration of the original distribution of classes. For instance, under-sampling may
throw out potentially useful data (leading to information loss) and augment the
variance of the classifier, while over-sampling increases the population of the data
set by generating synthetic examples and increases the likelihood of overfitting
and the computational burden of any learning model (Kang et al., 2017; López
et al., 2013; Vuttipittayamongkol & Elyan, 2020; Wong et al., 2018).

Though conclusions about what is the most efficient resampling strategy for
the class imbalance problem are divergent, many studies have reported that over-
sampling usually performs better than under-sampling (Bach et al., 2017; Batista
et al., 2004; Garcı́a et al., 2012; Prati et al., 2015; Van Hulse et al., 2007; Yin &
Gai, 2015). These conclusions have been drawn from mere experimental com-
parisons of a collection of resampling techniques to evaluate their performance,
while the reasons why over-sampling is generally superior to under-sampling have
not been properly investigated. Moreover, many of those studies have considered
the imbalance ratio (the ratio of the majority class size to the minority class size)
as the unique data difficulty factor1, thus neglecting other relevant data charac-
teristics that could help to explain the behavior of each of the three resampling
strategies.

Taking into account the limitations just mentioned, the motivation of this paper
is to provide further insight into the underlying causes of the apparent superiority
of over-sampling. In pursuing this objective, the contribution of this present pa-

1Data difficulty factors refer to internal and local characteristics of class distributions that may
degrade the performance of standard classifiers.
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per is a large-scale experimental analysis with 22 resampling methods across six
articial data sets and 73 real-life data sets to understand the superiority of over-
sampling based on the distribution of safe and unsafe samples. To this end, we
address the following questions:

(i) What effect do the resampling algorithms have on the inner structure of the
class-imbalanced data sets?,

(ii) Can the superiority of over-sampling algorithms be explained in terms of
safe and unsafe samples?,

(iii) Does there exist a close link between the amount of safe and unsafe and the
performance of the strategies?

Unlike the common procedure that focuses only on the minority class, we
assume that the majority one also deserves to be analyzed because the distribution
of negative samples may provide meaningful information. Our hypothesis is that
over-sampling often outperforms under-sampling because the former leads to a
distribution of sample types with more safe examples and less unsafe cases than
the latter. Hopefully, this will allow us to expand our understanding of how the
performance of the resampling strategies is related to their effects on the structure
of a data set. The findings of this study can serve as a valuable guideline to design
expert and intelligent systems for many real-life applications that have to deal with
class-imbalanced data such as fraud detection, cancer malignancy grading, fault
detection in industrial machinery and software defect prediction, among many
others.

Henceforward, this paper is organized as follows. Section 2 summarizes a
pool of works concerned with analyzing the possible relationships between class
imbalance and other data difficulty factors. Section 3 provides a summary of rep-
resentative resampling techniques, which will be further used for the experimental
analysis. Section 4 presents a neighborhood-based categorization of the different
sample types that can be found in an imbalanced data set. Next, Section 5 de-
scribes the research methodology that we have adopted to conduct this study and
presents the thorough experimentation carried out. Finally, Section 6 remarks on
the main findings and outlines possible directions for further research.

2. Class imbalance and other data difficulty factors

As already remarked, the imbalanced distribution of classes itself is not the
only data difficulty factor, but there exist other intrinsic data characteristics that
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combined with class imbalance can be even more critical and lead to a severe loss
of classification performance, especially for the minority class. Das et al. (2018)
proposed a categorization of the intrinsic data characteristics into two groups:
(i) distribution-based data irregularities, and (ii) feature-based data irregularities.
The first group covers class imbalance, outliers and noisy data, class overlapping,
small disjuncts, data set shift and small data set size, whereas the second group
includes missing, noisy, irrelevant and redundant features. Next, we summarize a
representative collection of recent publications where the class imbalance appears
as the intersection factor between both groups.

2.1. Distribution-based data irregularities
One of the first papers that intended to discover any links between class imbal-

ance and data complexity corresponds to the one by Japkowicz & Stephen (2002),
in which the authors concluded that imbalance is a relative problem that depends
on both the difficulty of the data and the overall size of the training set. After this
seminal work, numerous studies have explored the influence of other complexity
factors in class-imbalanced data. For instance, Prati et al. (2004b) investigated
how class imbalance and error-prone small disjuncts are related to each other,
whereas Jo & Japkowicz (2004) claimed that the degradation of classification ac-
curacy is more due to the presence of small disjuncts than to the class imbalance
problem. A similar conclusion was drawn by Weiss (2010), who also showed that
class imbalance is partly responsible for the problem with small disjuncts.

Prati et al. (2004a) showed that there exists a strong correlation between the
degree of class overlapping and class imbalance. Similarly, the experimental re-
sults in two papers by Garcı́a et al. (2006, 2007) suggested that the local imbalance
in the overlap region has an impact on the performance of classifiers stronger than
the global imbalance, especially when there exists strong overlap and synthetic ex-
amples are generated with SMOTE. On the other hand, Garcı́a et al. (2008) stated
that the nearest neighbor classifier was more sensitive to the size of the class over-
lap than to the overall imbalance ratio. Vorraboot et al. (2015) proposed some
modified hybrid algorithms to improve the classification performance of highly
imbalanced large data sets with overlapped regions.

Dal Pozzolo et al. (2015) showed that the benefits of using an under-sampling
algorithm strongly depends on the number of samples, the variance of the clas-
sifier, the degree of imbalance and the value of the posterior probability. Garcı́a
et al. (2015) compared the behavior of three linear classifiers modeled on both
the feature space and the dissimilarity space when the class imbalance of data
sets interweaved with small disjuncts and noise; they showed that small disjuncts
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could be much better overcome on the dissimilarity space than on the feature
space, whereas noise in imbalanced data sets cannot be completely solved through
the dissimilarity-based representation. Luengo et al. (2011) evaluated the behav-
ior of three resampling methods (SMOTE, SMOTE-ENN, and an evolutionary
under-sampling algorithm) by using three data complexity measures (F1, N4, and
L3) (Ho & Basu, 2002) computed over the imbalanced data sets and then, they
derived two descriptive rules to identify the data sets in which the C4.5 and PART
decision trees could perform well.

Napierala et al. (2010) analyzed how the noisy and borderline positive ex-
amples hindered the classification performance and concluded that focused pre-
processing methods outperformed both random and cluster-based over-sampling
algorithms. Stefanowski (2013) observed that the degradation of classification per-
formance was more related to the decomposition of the minority class into small
sub-groups than to the class imbalance, and also that the amount of borderline
and rare examples in the minority class had an even stronger influence on the
classifiers.

Sáez et al. (2016) proposed a general methodology to decide which types of
positive samples should be processed by an over-sampling algorithm when facing
with multi-class imbalanced distributions; the types of samples were characterized
by using the local neighborhood-based procedure that will be further introduced in
Section 4. Following the same line, Skryjomski & Krawczyk (2017) analyzed the
structure of the minority class to transform the SMOTE algorithm into a selective
over-sampling method focused on certain types of positive examples. Using two
artificial data sets with different dimensions and imbalance ratios, Wojciechowski
& Wilk (2017) found out that the critical factor affecting the true-positive rate was
the distribution of sample types, while the impact of dimensionality and imbalance
ratio was limited. Similarly, Stefanowski (2016) concluded that the performance
of the most representative preprocessing approaches depends on the dominating
type of minority examples.

2.2. Feature-based data irregularities
Bak & Jensen (2016) studied the imbalance problem concerning the classi-

fication of high-dimensional binary data. Blagus & Lusa (2013) observed that
SMOTE (Synthetic Minority Oversampling TEchnique) did not alleviate the bias
towards the classification in the majority class when the imbalanced data set was
also high-dimensional. Wasikowski & Chen (2010) showed that feature selection
could tackle the class imbalance problem better than some preprocessing algo-
rithms in high-dimensional data sets.
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Tomas̆ev & Mladenić (2013) suggested that minority class hubs might be re-
sponsible for most misclassifications of the majority class in high-dimensional
imbalanced data sets. Zheng et al. (2004) investigated the usefulness of common
feature selection metrics (information gain, chi-square, correlation coefficient,
and odds ratios) to handle imbalanced data. Van Hulse & Khoshgoftaar (2009)
discussed the effect of noise resulting from the corruption of positive examples,
which was the type of noise with most deterioration of the classification perfor-
mance; moreover, they observed that simple classifiers such as naive Bayes and
nearest neighbor were often more robust than more complex models such as sup-
port vector machines or random forests.

Zhang et al. (2017) argued that the problems of high-dimensional data and
imbalance are intertwined, and therefore they should not be solved separately. Lin
& Chen (2013) reported the benefits of using some feature selection algorithm as
a previous step to the application of the SMOTE over-sampling technique. Other
authors, however, proposed first to resample the data set and then apply a feature
selection procedure (Lachheta & Bawa, 2016).

Yin et al. (2013) studied the difficulties of feature selection when applied to
high-dimensional imbalanced data with Bayesian learning, and proposed two new
algorithms to overcome the drawbacks: one is based on the decomposition of
the majority classes into relatively smaller sub-classes, whereas the other one
uses the Hellinger distance. Maldonado et al. (2014) proposed a feature selection
technique using support vector machine and backward elimination in the con-
text of high-dimensional imbalanced data sets. Viegas et al. (2018) developed a
feature selection strategy for high-dimensional skewed data using genetic pro-
gramming. Shahee & Ananthakumar (2019) introduced a distance-based feature
selection method in order to tackle simultaneous occurrence of between-class and
within-class imbalance.

3. The resampling techniques

This section presents the resampling algorithms that will be used in the ex-
periments. As pointed out in Section 1, the resampling methods can be grouped
into two main categories: under-sampling and over-sampling. In addition, some
hybrid techniques combine the general ideas of under- and over-sampling to trans-
form the skewed class distribution into a more balanced distribution. Table 1 sum-
marizes these algorithms, which are briefly described in Appendix A.
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Table 1: Summary of resampling algorithms used in the experiments
Strategy Method Reference

Under-sampling Random under-sampling (RUS)
Hart’s condensing (CNN) Hart (1968)
Tomek links (TL) Tomek (1976)
One-sided selection (OSS) Kubat & Matwin (1997)
Hart’s condensing + Tomek links (CNN-TL) Batista et al. (2004)
Neighborhood cleaning (NCL) rule Laurikkala (2001)
Under-Sampling based on clustering (SBC) Yen & Lee (2006)
Class purity maximization (CPM) Yoon & Kwek (2005)

Over-sampling Random over-sampling (ROS) Batista et al. (2004)
Synthetic minority over-sampling technique (SMOTE) Chawla et al. (2002)
Borderline-SMOTE (B-SMOTE) Han et al. (2005)
Safe-Level-SMOTE (S-L-SMOTE) Bunkhumpornpat et al. (2009)
Nearest centroid neighborhood-based SMOTE (NCN-SMOTE) Garcı́a et al. (2012)
Gabriel graph-based SMOTE (GG-SMOTE) Garcı́a et al. (2012)
Relative neighborhood graph-based SMOTE (RNG-SMOTE) Garcı́a et al. (2012)
Adaptive synthetic over-sampling (ADASYN) He et al. (2008)
Adjusting the direction of the synthetic minority class (ADOMS) Tang & Chen (2008)
Agglomerative hierarchical clustering (AHC) Cohen et al. (2006)

Hybrid SMOTE + Wilson’s editing (SMOTE-ENN) Batista et al. (2004)
SMOTE + Tomek links (SMOTE-TL) Batista et al. (2004)
Selective preprocessing and resampling algorithm (SPIDER) Stefanowski & Wilk (2008)
SPIDER extension (SPIDER2 ) Napierala et al. (2010)

4. Exploiting local neighborhood for the identification of sample types

When dealing with imbalanced data sets, a remarkable issue that deserves
some special attention is the identification of the dominating types of examples be-
cause it can support interpretations of performance differences between the appli-
cation of different resampling algorithms and can be useful in evaluating the data
difficulty (Napierala & Stefanowski, 2012; Napierala et al., 2010; Stefanowski,
2016).

Several authors have proposed to distinguish two main types of samples ac-
cording to their neighborhood: safe and unsafe (Kubat & Matwin, 1997; Napierala
& Stefanowski, 2016; Sáez et al., 2016). The safe samples are placed in homoge-
neous regions with data from a single class and are sufficiently separated from ex-
amples belonging to any other classes, whereas the remaining samples are deemed
unsafe. Most models classify the safe samples correctly, but the unsafe samples
may make their learning especially difficult and more likely to be misclassified.

The common property of the unsafe samples is that they are located close
to examples that belong to the opposite class. However, the unsafe samples can
be further divided into three subtypes: borderline, rare and outlier (Krawczyk
et al., 2014; Napierala & Stefanowski, 2016). The borderline samples are located
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closely to the decision boundary between classes. The rare samples form small
data structures or clusters located far from the core of their class. Finally, the
outliers are single samples that are surrounded by examples from the other class.

A straightforward method to identify each sample type consists of analyzing
the local distribution of the data, which can be modeled either by computing their
k-neighborhood or through a kernel function (this consists in setting a local area
around the example and estimating the number of neighbors and their class labels
within it). It has been claimed that analyzing a local distribution of examples
is more appropriate than using global approaches because the minority class is
often formed by small sub-groups with difficult, nonlinear borders between the
classes (Napierala & Stefanowski, 2016; Sáez et al., 2016).

Suppose we have a data set, S = {zi = (xi, yi)}, where xi ∈ X ⊂ Rd is
a vector of attributes describing the i-th example and yi is its class label. Thus
the type of a sample zi is often determined by comparing the number of its k
nearest neighbors that belong to the class of zi with the number of neighbors of
the opposite class. Following the procedure described in Algorithm 1, which is a
generalization for multi-class data of the procedure proposed by Stefanowski &
Wilk (2008), a safe sample is characterized by having a neighborhood dominated
by examples that belong to its same class, rare samples and outliers are mainly
surrounded by examples from different classes, and the borderline samples are
surrounded by examples both from their same class and also from a different class.
Here we have introduced two functions: computeNeighbors and countSameClass.
The first one searches for the k nearest neighbors of a sample zi and stores them
in a vector named neighbors, while the second function counts how many of the
k nearest neighbors belong to the class of zi.

Most authors choose a fixed size of k = 5 because smaller values may poorly
distinguish the nature of examples and higher values would violate the assump-
tion of the local neighborhood (Bagherpour et al., 2018; Błaszczyński & Ste-
fanowski, 2015; Fernández et al., 2018a; Krawczyk et al., 2014; Napierala et al.,
2010; Napierala & Stefanowski, 2012, 2016; Ren et al., 2019; Sáez et al., 2016;
Skryjomski & Krawczyk, 2017; Stefanowski, 2016; Tomas̆ev & Mladenić, 2013).
Moreover, Napierala & Stefanowski (2016) carried out a sensitivity analysis to
check whether or not the parameter k could affect the results of assigning a sam-
ple type to the minority examples, and they observed that the proportion of each
sample type was quite stable while changing the value of k. Thus, using k = 5,
an example zi will be considered as: (i) safe if at least 4 neighbors are from the
class yi; (ii) borderline if 2 or 3 neighbors belong to the class yi; (iii) rare if only
one neighbor belongs to the class yi, and this has no more than one neighbor from
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Algorithm 1 Identification of sample types for multi-class data
1: Input:
2: S {Input data set}
3: k {Neighborhood size}
4:
5: Output:
6: safe {Set of safe samples}
7: borderline {Set of borderline samples}
8: rare {Set of rare samples}
9: outlier {Set of outlier samples}

10:
11: for all zi ∈ S do
12: neighbors← computeNeighbors(zi, S − {zi}, k)
13: sameClass← countSameClass(yi, neighbors)
14: if sameClass ≥ b0.8kc then
15: safe← safe ∪ {zi}
16: else
17: if sameClass ≥ b0.5kc then
18: borderline← borderline ∪ {zi}
19: else
20: if sameClass ≥ b0.2kc then
21: rare← rare ∪ {zi}
22: else
23: outlier ← outlier ∪ {zi}
24: end if
25: end if
26: end if
27: end for

its same class; and (iv) outlier if all its neighbors are from the opposite class. A
simple, illustrative example of this categorization is displayed in Figure 1.

The identification of the different sample types has mainly been applied to
the minority class because this often constitutes the most important class for most
applications with imbalanced data sets. However, the percentage of samples in
each category for the majority and minority classes may differ heavily from each
other and therefore, we believe that it could be useful and more informative to
analyze the true distribution of sample types for both classes present in class-
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Figure 1: Example of sample types using the procedure given in Algorithm 1

imbalanced data. In this sense, the computation may resemble a means of data set
evaluation that characterizes the overlap in terms of a scalar value. Considering
that the class overlapping is defined as the data space where there exists a similar
quantity of training samples of both classes (Chen et al., 2018; López et al., 2013),
we argue that the presence of borderline samples (2 or 3 out of the 5-nearest
neighbors belong to the same class) is closely related to the concept of overlapping
and therefore, it seems possible to estimate the size of the overlapping regions by
computing the proportion of borderline samples in a data set.

5. Experiments

Two groups of experiments on binary problems were carried out to investigate
the effect of each of the three resampling strategies on the distribution of sample
types in both classes, and also to discover any possible link between such distri-
bution and the classification performance. The experiments in the first block were
performed on artificial data sets taken from the paper by Napierala et al. (2010)
because using synthetic data allows us to know their characteristics a priori and
analyze the effects of resampling in a fully controlled environment. The second
group of experiments was on a well-known benchmark suite of real-life databases
widely used for class imbalance problems (Chen et al., 2019; Jing et al., 2019;
Kovács, 2019; Kuncheva et al., 2019; Lopez-Garcia et al., 2019), which are all
available at the KEEL database repository (Alcalá-Fdez et al., 2011). The results
of both experiments were estimated by 5-fold stratified cross-validation in order
to have a sufficient amount of positive examples in the test partitions.

In binary classification problems, the quite common method for evaluating
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the predictive performance is based on a 2 × 2 matrix confusion as shown in
Table 2. Here, columns represent the predicted class and rows indicate the actual
class, whereas the main diagonal contains the number of correct predictions. For
estimating the effectiveness of a classifier on the positive and negative classes
separately, two plain metrics can be easily obtained: the true positive rate, TPR =
TP/(TP+FN), which is the proportion of positive examples correctly classified,
and the true negative rate, TNR = TN/(TN + FP ), which is the proportion of
negative examples correctly classified.

Table 2: Confusion matrix for a two-class problem.

Predicted positive (Rp) Predicted negative (Rn)

Positive class (Np) True Positive (TP) False Negative (FN)
Negative class (Nn) False Positive (FP) True Negative (TN)

In the context of class imbalance problem, the performance evaluation is car-
ried out using more powerful metrics derived from straightforward indexes. Some
examples are the geometric mean (Kubat & Matwin, 1997; Branco et al., 2016;
Fernández et al., 2018b), the Fβ−measure (Rijsbergen, 1979; Branco et al., 2016;
Fernández et al., 2018b), and the area under the receiver operating characteris-
tic curve (AUC) (Bradley, 1997; Branco et al., 2016; Fernández et al., 2018b).
Although these performance metrics are used extensively under imbalanced do-
mains, several studies have shown the limitations of these measures.

Garcı́a et al. (2014) have documented that the geometric mean shows an in-
variance behavior under the change of TP with TN and FN with FP. Therefore,
different combinations of TPR and TNR may produce the same values of the ge-
ometric mean. The Fβ−measure combines into a single scalar value both TPR
and precision (precision = TP/TP + FP ), where the β parameter favors pre-
cision when β > 1, and TPR otherwise. Even though β allows to adjust the
importance of TPR or precision, the studies of Daskalaki et al. (2006), Japkowicz
(2006), Sokolova & Lapalme (2009), and Landgrebe et al. (2006) have showed
that precision ignores the relative size of the negative class and displays a strong
dependence upon the imbalance ratio; hence, in heavily imbalance problems (1%
positives samples), any raise of FP will result in low precision and consequently,
in low Fβ−measure, even with high TPR values (Forman & Scholz, 2010). In
the case of AUC, there may exist situations that produce the same AUC value but
different accuracies (Huang & Ling, 2005). Hand & Till (2001) and Hand (2009)
also have reported some limitations of the AUC such as the fact that it ignores
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misclassification costs and assumes that these costs depend on the classifier.
Bearing in mind that this paper aims to analyze the effects of the resampling

methods on each class and that each performance measure evaluates different
properties, here we will use the both straightforward TPR and TNR indexes.

5.1. Experiments with artificial data sets
The experiments on artificial data were conducted on three databases with

different shapes of the minority class (subclus, clover, and paw) whose examples
are randomly and uniformly distributed in a two-dimensional feature space. In all
cases, the examples of the minority class are uniformly surrounded by the majority
class.

In subclus, the positive examples are located inside rectangles that form small
disjuncts. Clover represents a more complex, non-linear situation, where the mi-
nority class resembles a flower with elliptic petals. In paw database, the minority
class is decomposed into three elliptic sub-regions of varying cardinalities, where
two sub-regions are located close to each other, and the remaining smaller sub-
region is separated.

From the multiple data sets that were generated with different settings in the
original paper (Napierala et al., 2010), we chose a group of databases with 800
examples, an imbalance ratio of 7, and two different levels of noise (0% and 70%).
This means that the experiments were carried out over a total of 6 artificial data
sets (3 shapes × 1 imbalance ratio × 2 levels of noise), which are illustrated in
Figure 2.

The experiments consisted of applying the resampling techniques described
in Section 3 to the original data sets and record the proportion of each sample
type for both the minority class and the majority class. This will allow to analyze
how each strategy affects the distribution of sample types in a data set, which may
contribute to gain some insight into the behavior of these techniques when they are
used in imbalanced data sets that are also characterized by other data difficulties,
such as the presence of noisy samples that can largely impair the predictive results
of classifiers.

Figures 3 and 5 display the proportion of safe, borderline, rare and outlier
samples in the positive and negative classes after resampling the imbalanced data
sets, respectively. The results that correspond to the under-sampling algorithms
(U) are represented by red squares, those from the over-sampling methods (O)
are indicated by blue circles, and the proportions given by the hybrid techniques
(H) are depicted by green triangles. The black markers are for the proportions
in the original (imbalanced) data sets with no resampling (I), which should be
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(a) Subclus, 0% of noise (S0) (b) Subclus, 70% of noise (S70)

(c) Clover, 0% of noise (C0) (d) Clover, 70% of noise (C70)

(e) Paw, 0% of noise (P0) (f) Paw, 70% of noise (P70)

Figure 2: The artificial data sets

interpreted as a reference value. Note that each scatterplot has a total of 138
points: (8 under-sampling algorithms + 10 over-sampling algorithms + 4 hybrid
algorithms + 1 no resampling) × 6 databases. Moreover, Figures 4 and 6 show
the proportions averaged over all algorithms of each resampling strategy.
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Figure 3: Proportion of sample types in the positive class for the artificial databases

These scatterplots reveal that the three resampling strategies increased the pro-
portion of safe samples and decreased the percentage of unsafe samples in the
positive class when compared to the imbalanced data sets. What is more inter-
esting though is that, for the databases with 70% of noise (S70, C70 and P70), the
over-sampling and hybrid techniques achieve a higher (lower) proportion of safe
(unsafe) samples than under-sampling. While all over-sampling algorithms aug-
mented the number of safe samples and diminished the number of unsafe samples
very substantially, the proportions of safe, borderline and rare samples produced
by some under-sampling methods were even worse than those in the original data
sets. Regarding the hybrid techniques, these and over-sampling were not distant,
except in the case of the proportion of safe and borderline samples given by SPI-
DER whose results were similar to those achieved by the under-sampling strategy.

When analyzing the proportion of each sample type in the negative class, the
graphs in Figures 5–6 show that the proportion of safe samples after resampling
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Figure 4: Average proportion of sample types in the positive class for the artificial databases

the data sets using the over-sampling and hybrid algorithms was not far from that
in the original data sets. Here the proportion of unsafe samples produced by these
methods increased, especially in the case of the rare and outlier types. The under-
sampling techniques usually performed in an unstable behavior, serious decrease
of safe samples and an evident increase of borderline and rare.

5.1.1. Classification of the artificial data sets
The results of the experiments on the proportion of each sample type iden-

tified under-sampling as an inferior choice to make up for the class imbalance,
especially for the data sets with a large proportion of noisy examples (70%). This
resonates well with the general conclusions drawn from numerous comparative
studies available in the literature, which designate over-sampling as a usually more
effective strategy than under-sampling.

To fairly assess whether or not there exists any link between the proportions of
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Figure 5: Proportion of sample types in the negative class for the artificial databases

safe and unsafe samples and the classification performance, a C4.5 decision tree
classifier was applied to both the original (imbalanced) data sets and the collection
of resampled (balanced) data sets. We chose a decision tree because it is a com-
mon learner when dealing with class-imbalanced data (Boonchuay et al., 2017;
Lee, 2019; Sanz et al., 2017; Sardari et al., 2017; Sun et al., 2018). Besides C4.5
as a decision tree provides an accurate and easily interpretable model where the
classification decisions can be represented in the form of “if-then” rules (Quin-
lan, 1993; Witten et al., 2016), while other classifiers such as neural networks are
generally perceived as being a black box whose specific predictions are extremely
hard to understand.

Visualizing TPR and TNR in Figure 7 and comparing these graphs with those
in Figures 3 and 5 can help us discover and interpret the possible relationships
between the structure of resampled data sets and the performance of the classifier.

Our discussion of Figure 7 focuses on the results over the data sets with 70%
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Figure 6: Average proportion of sample types in the negative class for the artificial databases

of noisy examples because these represent a more challenging problem combining
imbalance and noise. As can be observed, when the classifier was applied to the
class-imbalanced data, the TPR was 0 or close to 0 (i.e., all or almost all the
positive samples were misclassified) and the TNR was equal to 1 (i.e., all negative
samples were classified correctly). The most interesting feature of these graphs,
however, is that both over-sampling and the hybrid sampling algorithms exhibited
a good trade-off between high TPR and high TNR, whereas some under-sampling
techniques produced high TNR but at the cost of yielding very low values of TPR
(even less than 0.5).

In summary, the graphs in Figure 7 confirm that the performance of classifiers
is related to the proportions of safe and unsafe samples, and these depend on the
resampling strategy applied to the class-imbalanced data. A qualitative compar-
ison between these graphs and those in Figures 3–6 suggests that over-sampling
mostly performs better than under-sampling because the former increases the pro-
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Figure 7: TPR and TNR over the artificial databases. Graphs on the right are for the averaged
values

portion of safe samples and also decrease the proportion of unsafe samples much
more important than the latter does.

5.2. Experiments with real-life data sets
The objective of the second series of experiments was to check whether or

not the behavior of the resampling strategies over real-life data agrees with the
results discussed in the previous experiments over artificial data sets. In total, we
chose a collection of 73 databases, which correspond to lowly, mildly and highly
imbalanced data sets. Table 3 summarizes the number of features (F), the number
of examples (E) and the imbalance ratio (IR) for each database; the data sets are
placed in ascending order of imbalance ratio.

Figures 8–10 plot the proportion of each sample type in the positive and neg-
ative classes for both the resampled data sets and the original data sets. The data
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Table 3: Summary of the real-life data sets
F E IR F E IR

glass1 9 214 1.82 ecoli-0-6-7 vs 5 6 220 10.00
ecoli-0 vs 1 7 220 1.86 glass-0-1-6 vs 2 9 192 10.29
wisconsin 9 683 1.86 ecoli-0-1-4-7 vs 2-3-5-6 7 336 10.59
pima 8 768 1.87 led7digit-0-2-4-5-6-7-8-9 vs 1 7 443 10.97
iris0 4 150 2.00 glass-0-6 vs 5 9 108 11.00
glass0 9 214 2.06 ecoli-0-1 vs 5 6 240 11.00
yeast1 8 1484 2.46 glass-0-1-4-6 vs 2 9 205 11.06
haberman 3 306 2.78 glass2 9 214 11.59
vehicle2 18 846 2.88 ecoli-0-1-4-7 vs 5-6 6 332 12.28
vehicle1 18 846 2.90 cleveland-0 vs 4 13 177 12.62
vehicle3 18 846 2.99 ecoli-0-1-4-6 vs 5 6 280 13.00
glass-0-1-2-3 vs 4-5-6 9 214 3.20 shuttle-c0 vs c4 9 1829 13.87
vehicle0 18 846 3.25 yeast-1 vs 7 7 459 14.30
ecoli1 7 336 3.36 glass4 9 214 15.47
new-thyroid1 5 215 5.14 ecoli4 7 336 15.80
new-thyroid2 5 215 5.14 page-blocks-1-3 vs 4 10 472 15.86
ecoli2 7 336 5.46 dermatology-6 34 358 16.90
segment0 19 2308 6.02 glass-0-1-6 vs 5 9 184 19.44
glass6 9 214 6.38 shuttle-6 vs 2-3 9 230 22.00
yeast3 8 1484 8.10 yeast-1-4-5-8 vs 7 8 693 22.10
ecoli3 7 336 8.60 glass5 9 214 22.78
page-blocks0 10 5472 8.79 yeast-2 vs 8 8 482 23.10
ecoli-0-3-4 vs 5 7 200 9.00 yeast4 8 1484 28.10
yeast-2 vs 4 8 514 9.08 winequality-red-4 11 1599 29.17
ecoli-0-6-7 vs 3-5 7 222 9.09 poker-9 vs 7 10 244 29.50
ecoli-0-2-3-4 vs 5 7 202 9.10 yeast-1-2-8-9 vs 7 8 947 30.57
glass-0-1-5 vs 2 9 172 9.12 yeast5 8 1484 32.73
yeast-0-3-5-9 vs 7-8 8 506 9.12 winequality-red-8 vs 6 11 656 35.44
yeast-0-2-5-7-9 vs 3-6-8 8 1004 9.14 yeast6 8 1484 41.40
yeast-0-2-5-6 vs 3-7-8-9 8 1004 9.14 winequality-white-3 vs 7 11 900 44.00
ecoli-0-4-6 vs 5 6 203 9.15 winequality-white-3-9 vs 5 11 1482 58.28
ecoli-0-1 vs 2-3-5 7 244 9.17 poker-8-9 vs 6 10 1485 58.40
ecoli-0-2-6-7 vs 3-5 7 224 9.18 shuttle-2 vs 5 9 3316 66.67
glass-0-4 vs 5 9 92 9.22 winequality-red-3 vs 5 11 691 68.10
ecoli-0-3-4-6 vs 5 7 205 9.25 poker-8-9 vs 5 10 2075 82.00
ecoli-0-3-4-7 vs 5-6 7 257 9.28 poker-8 vs 6 10 1477 85.88
vowel0 13 988 9.98

sets on the axis X are arranged in ascending order of the proportion of safe samples
in the positive class. For the sake of clarity, the results of each resampling strat-
egy have been plotted in a different graph. In this case, we have a total number of
657 points that correspond to under-sampling (73 databases × (8 under-sampling
algorithms + 1 no resampling)), 803 points to over-sampling (73 databases × (10
over-sampling algorithms + 1 no resampling)) and 365 points to hybrid sampling
(73 databases × (4 hybrid algorithms + 1 no resampling)).

A close look at these scatterplots shows that the discussion of the results for
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Figure 8: Proportion of sample types in the positive (left) and negative (right) classes for the
real-life databases preprocessed by under-sampling algorithms

the synthetic data also apply to those for the real-life databases. Indeed, as one
can observe in Figure 8, the proportion of safe samples in many sets that were
preprocessed by some under-sampling algorithms was even inferior to that in the
original data sets. Similarly, the amount of unsafe samples in many under-sampled
data sets was greater than that in the original data sets. As to over-sampling (Fig-
ure 9) and the hybrid strategy (Figure 10), the graphs show that most algorithms
increased the number of safe samples and also decreased the proportion of unsafe
samples, which is especially remarkable for the positive class.

To summarize the results of the graphs in Figures 8–10, we averaged the pro-
portions of each sample type over all algorithms for each resampling strategy.
The most interesting features of the graphs depicted in Figure 11 is that under-
sampling produced a proportion of safe samples in both classes clearly lower than
over-sampling and hybrid sampling, whereas the amount of unsafe samples was
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Figure 9: Proportion of sample types in the positive (left) and negative (right) classes for the
real-life databases preprocessed by over-sampling algorithms

higher in the under-sampled sets than in the sets preprocessed by the other two
resampling strategies.

As further evidence, Table 4 reports an index of improvement. For each re-
sampling algorithm A, the index of improvement is calculated as the difference be-
tween wins and losses, where wins (losses) is the total number of times (databases)
that the proportion of samples produced by A has been better (worse) than that in
the original data set. Note that better means that the proportion of safe samples
in the resampled data set is higher than that in the original data set, while for the
unsafe sample types it means that the proportion of samples in the resampled data
set is lower than that in the original data set. Such an index provides a means
of estimating the benefits of using a resampling technique to face the imbalance
problem. For each resampling strategy, the averaged index across all their algo-
rithms has also been included in this table.
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Figure 10: Proportion of sample types in the positive (left) and negative (right) classes for the
real-life databases preprocessed by hybrid algorithms

Regarding the positive class, the index of improvement reported in Table 4
shows that the over-sampling strategy produced the best outputs for the safe and
borderline types, whereas the hybrid methods achieved the highest averaged in-
dex when analyzing the proportion of rare and outlier samples. Nevertheless, the
superiority of the hybrid techniques over the over-sampling methods came from
the poor behavior of the AHC algorithm in processing the unsafe samples. As
already observed in the experiments with synthetic data, under-sampling was the
worst strategy regarding the improvement of the balanced data over the original
(imbalanced) data, revealing that it yielded the lowest proportion of safe samples
and also the highest proportion of unsafe samples.

For the majority class, most algorithms achieved a negative score of the index
of improvement, which means that the balanced data sets consist of less safe sam-
ples and more unsafe samples than the original data sets. Note that this result is
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Figure 11: Proportion of sample types in the positive (left) and negative (right) classes for the
real-life databases averaged over all algorithms

consistent with the ultimate objective of the resampling techniques as they mainly
concentrate on improving the minority class.

In summary, the numerical indices of improvement agree with the results de-
picted in the scatterplots of Figures 8–10. On the other hand, the conclusions
drawn from the experiments over the real-life data closely resemble those reached
in the experiments over the synthetic databases.

5.2.1. Classification of the real-life data sets
Like in the experiments on the synthetic data, a C4.5 decision tree was applied

to both the imbalanced and the resampled data sets to check for any link between
the proportions of sample types and the resulting classification performance.

As the characteristics of the 73 experimental databases may differ from each
other considerably, we firstly categorized them into three groups according to the
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Table 4: Index of improvement
Positive class Negative class

Safe Border Rare Outlier Safe Border Rare Outlier

RUS 69 15 39 66 -68 -66 -66 -57
OSS 64 10 21 68 -70 -70 -65 -38
CNN 62 -31 17 68 -69 -69 -67 -38
TL 41 15 20 43 54 56 13 2
CNN-TL 65 12 38 67 -70 -70 -68 -58
NCL 52 27 25 54 52 52 -5 0
CPM -53 -52 -65 15 -73 -71 -52 -19
SBC 70 59 64 67 -71 58 24 13

Under-sampling 46 7 20 56 -39 -23 -36 -24

ROS 70 65 66 68 -67 -20 -68 -66
ADASYN 70 53 65 67 -69 -44 -69 -67
ADOMS 70 57 62 68 -69 -59 -67 -66
AHC 73 -70 -62 -67 73 -70 -70 -67
SMOTE 70 53 63 68 -69 -44 -66 -65
B-SMOTE 70 62 64 68 -69 -22 -68 -66
S-L-SMOTE 70 66 64 68 -68 -32 -67 -66
NCN-SMOTE 70 50 62 68 -68 -49 -65 -65
GG-SMOTE 70 50 62 68 -68 -50 -65 -65
RNG-SMOTE 70 55 64 68 -68 -44 -66 -65

Over-sampling 70 44 51 54 -54 -43 -67 -66

SMOTE-ENN 71 51 63 67 -52 -36 -59 -56
SMOTE-TL 70 52 63 68 -56 -36 -65 -53
SPIDER 20 -38 63 67 -54 -36 -61 -18
SPIDER2 66 53 61 62 -56 -28 -59 -55

Hybrid 57 30 63 66 -55 -34 -61 -46

prevalent type of positive samples in the original data sets (see Appendix B): safe,
borderline, and rare-outlier (databases in which the positive samples are mainly
placed between the rare and the outlier types). The purpose of this categorization
was to better understand the behavior of the resampling strategies as a function of
the distribution of sample types in the imbalanced data sets.

The scatterplots of TPR versus TNR are displayed in Figures 12–14. The
uppermost graphs correspond to the results achieved with under-sampling, the
middle ones are for the over-sampling algorithms, and the lowermost ones are for
the hybrid methods.

The graphs in this figure reveal that the over-sampling algorithms and the hy-
brid sampling methods performed similarly, irrespective of the prevalent type of
positive samples. As already highlighted in the experiments on artificial data,
both strategies led to a good trade-off between high TPR and high TNR with
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Figure 12: TPR versus TNR over the safe data sets

points located to the top right corner of the scatterplots for the safe and borderline
databases. We observed, however, a different behavior pattern for the rare-outlier
databases: in this case, the over-sampling and hybrid techniques still achieved
very high values of TNR, but also an important degradation of accuracy on the
positive class with a majority of points lying on the left side of the graphs (i.e.,
TPR ≤ 0.5).

Regarding the scatterplots for the under-sampling strategy, we found pretty
different behaviors among methods. For the safe databases, a majority of points
are located close to the top right corner of the graph (high TPR and high TNR),
but a few points lie near the bottom right corner (high TPR and very low TNR).
This behavior was similar to that shown for the borderline databases, although
both TPR and TNR were usually lower than those achieved for the safe databases.
For the rare-outlier databases, one can see that the results of under-sampling were
worst than those of the over-sampling and hybrid algorithms, with many points
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Figure 13: TPR versus TNR over the borderline data sets

representing low TPR and low TNR.
In summary, these results reveal that there exist several links between the dis-

tribution of sample types produced by the resampling strategies and the classifica-
tion performance, thus suggesting that the analysis of such a distribution is indeed
a useful tool to understand the behavior of each preprocessing method. In general,
the over-sampling and hybrid techniques can be claimed to be more effective than
under-sampling, independently of the prevalent type of positive samples in the
imbalanced data set. However, the most meaningful differences appeared when
under-sampling was applied to the databases with a majority of rare and outlier
samples, which correspond to the most difficult cases for standard classifiers.

6. Conclusions

Our motivation for this work came from the observation that many studies
on class imbalance stated that over-sampling mostly performs better than under-
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Figure 14: TPR versus TNR over the rare-outlier data sets

sampling, but the reasons for its superiority were not adequately addressed. Thus
we have intended to increase understanding of the behavior of resampling strate-
gies by analyzing the distribution of sample types in the balanced data sets. Our
hypothesis was that the apparent superiority of over-sampling techniques comes
from the fact that these provide a higher proportion of safe samples and a lower
proportion of some subtypes of unsafe samples than the under-sampling methods.

The experiments to check whether or not our hypothesis holds have consisted
in gathering the information related to the local neighborhood of both classes,
calculating the proportions of each sample type and investigating for any links
between these proportions and the classification performance of a decision tree.
From the experiments over artificial and real-life data, we have found that the over-
sampling algorithms and the hybrid resampling methods increased the proportion
of safe samples and also diminished the proportion of unsafe samples much more
importantly than under-sampling did. We claim that this result is already impor-
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tant by itself because it suggests that classification with over-sampled data sets
will be presumably easier and more effective than using under-sampled data sets.

When compared the resulting distribution of sample types with the classifica-
tion performance measured by the true-positive and true-negative rates, we have
observed that our hypothesis mostly holds. In general, the strategies with the
highest proportion of safe samples and the lowest proportion of unsafe samples
corresponded to those with the highest overall performance, which may indicate
that there are some relationships between the proportions of safe and unsafe sam-
ples and the performance of the classifier.

We believe that the findings of this study can be of interest for the research
community in expert and intelligent systems because it allows to gain a more in-
depth insight into the performance of resampling strategies for class-imbalanced
data and expands the current knowledge about why over-sampling performs gener-
ally better than under-sampling. On the other hand, the conclusions drawn in this
paper could provide support for the development of new preprocessing algorithms
by incorporating some a priori knowledge about the internal structure of the im-
balanced data sets. Another practical implication that could deserve to be further
studied is the design of a meta-learning recommendation system for characteriz-
ing classification problems. This is based on the idea of using the categorization
of examples as a means to guess the best performing algorithm according to the
inner structure of each data set.

Despite its contributions, the results of this paper should not be interpreted
without accounting some limitations that could be addressed in future works.
First, the research has focused on the analysis of relatively small-sized data sets
(at most 5472 examples and 34 features), and so any generalization is limited to
this particular context. It would be useful to replicate this study when the number
of examples is in the order of millions to billions and the number of features is
in the order of thousands, where the boundary conditions are very different and
much more complex. A second limitation is that the categorization of examples
has been based on computing their k-neighborhood, but it would be worth com-
paring the results of this study with those given by the use of a kernel function. Fi-
nally, the emphasis of this paper has been on three common resampling strategies,
but it could be extended to ensemble-based preprocessing methods such as RUS-
Boost (Seiffert et al., 2010), SMOTEBoost (Chawla et al., 2003), EasyEnsem-
ble (Liu et al., 2009) and SMOTEBagging (Wang & Yao, 2009), which have been
shown to be among the most effective techniques in many real-life applications.
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Appendix A. Resampling methods

This appendix provides a brief description of the resampling algorithms used
in the experiments.

Appendix A.1. Under-sampling
Random under-sampling (RUS) balances the data set through the random re-

moval of negative examples. Although important information can be lost when
examples are discarded at random, this algorithm has empirically been shown to
be one of the most effective under-sampling methods.

Many other under-sampling proposals are based on a more intelligent selection
of the negative examples to be eliminated. For instance, the Hart’s condensing
(CNN) algorithm (Hart, 1968) has been used as an under-sampling technique by
applying the concept of consistent subset to eliminate the negative examples that
are sufficiently far away from the decision boundary because these examples can
be considered irrelevant for learning. Analogously, the Tomek links (TL) (Tomek,
1976) have already been employed to remove the majority class examples since,
if two examples form a Tomek link, then either one of these examples is noise or
both examples are borderline.

Kubat & Matwin (1997) proposed the one-sided selection (OSS) technique,
which selectively removes only those negative samples that either are redundant
or border the minority class examples (assuming that these bordering cases are
noise): the borderline examples are detected using the Tomek links, while the
redundant ones are eliminated with Hart’s condensing. A similar method cor-
responds to the CNN-TL algorithm (Batista et al., 2004), which firstly finds a
consistent subset and then applies the procedure based on the Tomek links.

Unlike the one-sided selection technique, the neighborhood cleaning (NCL)
rule (Laurikkala, 2001) concentrates more on data filtering than on data reduction;
to this end, Wilson’s editing (ENN) (Wilson, 1972) is employed to identify and
remove noisy negative examples. According to the authors, NCL performs better
than OSS and processes noisy examples more carefully. However, this method
is strongly biased in favor of the minority class and leads to poor specificity and
overall accuracy.
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Yen & Lee (2006) presented an under-sampling algorithm based on clustering
(SBC): it first clusters all the original examples into some clusters, and then selects
an appropriate number of majority class samples from each cluster by considering
the ratio of the number of majority class examples to the number of minority class
examples in the cluster. On the other hand, Yoon & Kwek (2005) proposed the
class purity maximization (CPM) algorithm, which intends to split the majority
class into dense clusters. The idea is to determine majority examples that are far
away from the decision boundary, that is, to find as many clusters of majority
samples as possible that do not contain any positive example or at most very few
minority examples.

Appendix A.2. Over-sampling
The simplest strategy to augment the minority class is random over-sampling

(ROS), which corresponds to a non-heuristic method that balances the class dis-
tribution through a random replication of positive examples (Batista et al., 2004).
Although effective, this method may increase the likelihood of overfitting since it
makes exact copies of the minority class examples.

Chawla et al. (2002) proposed the SMOTE algorithm, which generates artifi-
cial samples of the minority class by interpolating existing examples that lie close
together. It first finds the k positive nearest neighbors for each minority class ex-
ample and then, the synthetic examples are generated in the direction of some or
all of those nearest neighbors. Depending upon the amount of over-sampling re-
quired, a certain number of examples from the k nearest neighbors are randomly
chosen.

Although SMOTE has demonstrated to be an effective method for the class
imbalance problem, it may overgeneralize the minority class as it disregards the
distribution of majority class neighbors and consequently, the generation of syn-
thetic examples may increase the overlapping between classes (Maciejewski &
Stefanowski, 2011). In order to address this weakness in SMOTE, the resampling
process can be altered to account for the class density around the minority class
examples. For instance, the borderline-SMOTE algorithm (Han et al., 2005) con-
sists of using only positive examples close to the decision boundary since these
are more likely to be misclassified.

The Safe-Level-SMOTE algorithm (Bunkhumpornpat et al., 2009) calculates
a “safe level” coefficient (sl) for each minority class example, which is defined as
the number of other minority class examples among its k neighbors, to generate
new synthetic examples close to safe regions. If the coefficient sl is equal or close
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to 0, such an example is considered as noise; if sl is close to k, then this example
may be located in a safe region of the minority class.

Garcı́a et al. (2012) modified the original SMOTE method by using the sur-
rounding neighborhood concept when selecting the k positive neighbors of the
minority class examples. The authors proposed three variations of the algorithm,
each one based on a particular surrounding neighborhood realization (Sánchez &
Marqués, 2002) for over-sampling the minority class: the nearest centroid neigh-
borhood (NCN), the Gabriel graph (GG) and the relative neighborhood graph
(RNG).

He et al. (2008) introduced an adaptive synthetic over-sampling (ADASYN)
approach for learning from imbalanced data sets. The rationale behind this algo-
rithm is to use a weighted distribution for different minority class examples ac-
cording to their level of difficulty in learning, thus shifting the decision boundary
to be more focused on those examples that are harder to learn.

The ADOMS algorithm proposed by Tang & Chen (2008) is based on gen-
erating artificial examples along the first principal component axis of local data
distribution composed of a positive sample and its k nearest neighbors. When
k = 1, the result of this method matches that of SMOTE.

Another exciting proposal for populating the minority class is based on the
application of an agglomerative hierarchical clustering (AHC) algorithm (Cohen
et al., 2006). It uses single- and complete-linkage in succession to vary the clus-
ters produced. Then the clusters are gathered from all levels of the resulting den-
drograms and their centroids are computed and concatenated with the original
positive samples. This results in augmenting the number of positive examples to
match the size of the negative class.

Appendix A.3. Hybrid resampling
Although SMOTE produces well-balanced class distributions, some other dif-

ficulties often present in skewed data sets are not solved. For instance, class
overlapping appears to be a widespread situation: some negative examples may
be located within the clusters of the minority class and some synthetic positive
examples may encroach on the majority class clusters. To overcome this prob-
lem and create non-overlapped class clusters, Batista et al. (2004) proposed the
SMOTE-ENN technique: it consists in applying the Wilson’s editing algorithm to
the over-sampled data set to remove misclassified examples of both classes.

Another straightforward hybridization technique is based on the combination
of SMOTE with the Tomek links (Batista et al., 2004). This method (SMOTE-TL)
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removes positive and negative examples that form a link after over-sampling the
data set through SMOTE.

Stefanowski & Wilk (2008) introduced a selective preprocessing and resam-
pling algorithm (SPIDER) that firstly preprocesses the data set to identify the safe
and noisy examples. After this initial stage, all the noisy negative samples are
removed, and the safe negative examples are kept. On the other hand, the mi-
nority class is modified according to one of the following three strategies: weak
amplification, weak amplification and relabeling, and strong amplification.

SPIDER2 is an extension of the SPIDER, which consists of two phases to pre-
process the majority class and the minority class respectively (Napierala et al.,
2010). Firstly, it identifies the safe and unsafe (noisy and borderline) negative
examples and then, it either removes or relabels the noisy samples. In the sec-
ond phase, the algorithm identifies the positive examples taking into account the
changes introduced in the data set during the first phase. Next, it replicates the
noisy examples of the minority class. The only difference between this technique
and SPIDER is that the latter processes both classes simultaneously.

Appendix B. Safe, borderline and rare-outlier databases

Tables B.5–B.7 report the databases included in each category according to
the prevalent type of positive samples in the original data sets: safe (S), borderline
(B) and rare-outlier (R-O) samples.
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Table B.5: Safe data sets
S B R-O S B R-O

iris0 1.000 0.000 0.000 ecoli4 0.663 0.175 0.163
ecoli-0 vs 1 0.997 0.004 0.000 glass-0-1-2-3 vs 4-5-6 0.632 0.280 0.088
shuttle-c0 vs c4 0.986 0.006 0.008 vehicle2 0.628 0.254 0.118
shuttle-2 vs 5 0.964 0.031 0.005 ecoli-0-1 vs 2-3-5 0.624 0.115 0.261
segment0 0.944 0.048 0.008 page-blocks0 0.623 0.186 0.191
wisconsin 0.925 0.064 0.012 new-thyroid2 0.607 0.279 0.114
shuttle-6 vs 2-3 0.900 0.100 0.000 new-thyroid1 0.593 0.271 0.136
dermatology-6 0.900 0.038 0.063 ecoli-0-3-4-7 vs 5-6 0.550 0.280 0.170
led7digit-0-2-4-5-6-7-8-9 vs 1 0.837 0.068 0.095 yeast-2 vs 8 0.550 0.000 0.450
ecoli2 0.779 0.144 0.077 yeast-2 vs 4 0.549 0.181 0.270
glass6 0.759 0.000 0.241 ecoli1 0.546 0.318 0.136
vowel0 0.747 0.247 0.006 glass0 0.521 0.357 0.121
ecoli-0-1-4-6 vs 5 0.738 0.100 0.163 ecoli-0-1-4-7 vs 5-6 0.520 0.300 0.180
vehicle0 0.729 0.245 0.026 yeast3 0.502 0.287 0.212
yeast-0-2-5-7-9 vs 3-6-8 0.717 0.116 0.167 ecoli-0-2-6-7 vs 3-5 0.488 0.214 0.297
ecoli-0-3-4 vs 5 0.713 0.138 0.150 glass1 0.481 0.312 0.207
ecoli-0-3-4-6 vs 5 0.713 0.138 0.150 ecoli-0-6-7 vs 5 0.475 0.313 0.213
ecoli-0-2-3-4 vs 5 0.713 0.138 0.150 ecoli-0-1-4-7 vs 2-3-5-6 0.473 0.277 0.250
ecoli-0-4-6 vs 5 0.713 0.138 0.150 ecoli-0-6-7 vs 3-5 0.468 0.239 0.293
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