Eco-friendly synthesis of Fe$_3$O$_4$ nanoparticles: Evaluation of their catalytic activity in methylene blue degradation by kinetic adsorption models

Álvaro de Jesús Ruiz-Baltazarb,c, Simón Yobanny Reyes-Lópezb,c, María de Lourdes Mondragón-Sánchezc, Anel Ivonne Robles-Cortésc, Ramiro Pérezd

a CONACYT-Centro de Física Aplicada y Tecnología Avanzada, Universidad Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro C.P. 76230, Mexico
b Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Estocolmo s/n, Ciudad Juárez, Chihuahua C.P. 32300, Mexico
c Tecnológico Nacional de México/Instituto Tecnológico de Morelia, Posgrado en Metalurgia, Av. Tecnológico 1500, col, Lomas de Santiaguito, C.P. 58120 Morelia, MICH, Mexico
d Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, MOR 62210, Mexico

ARTICLE INFO

Keywords:
Green synthesis
Fe$_3$O$_4$ nanoparticles
Kinetic adsorption models
Methylene blue degradation

ABSTRACT

In this work the green synthesis of Fe$_3$O$_4$ nanoparticles by cynara cardunculus leaf extract is presented. This green synthesis route offers a novel and eco-friendly alternative to obtaining of iron oxides nanoparticles. Functional nanoparticles with potential catalytic applications, particularly for water remediation containing organic dyes were synthesized. The structural characterization of the Fe$_3$O$_4$ nanoparticles were carried out by scanning electron microscopy (SEM), X-ray diffraction, techniques. Calculation to obtaining the crystallite size by Williamson–Hall method were performed. Additionally, Raman spectroscopy support the Fe$_3$O$_4$ characterization. Posteriorly, the Fe$_3$O$_4$ nanoparticles were evaluated on the methylene blue degradation. Kinetic adsorption models were employed to establish the behavior during the methylene blue degradation process. Pseudo first order, Pseudo second order, Intraparticle diffusion and Elovich Models were calculated based on the experimental data obtained. Calculations as the correlation factor indicates the best linear fit between the theoretical models and the experimental data obtained during the blue methylene degradation.

Introduction

In recent years, the development of nanomaterials has aroused much interest due to the potential application in multiple fields such as physics, chemistry, biomedicine, optics, electronics and catalysis, among other [1–4]. The reason why these nanomaterials have motivated several studies, is due to the remarkable properties that are exhibited, such as their high thermal and electrical conductivity, their demonstrated catalytic activity and their biocompatibility [5–8]. In this sense, the optimization of the morphology and distribution of the size of the materials, conditions the mentioned properties. In the specifically case of the iron oxide nanoparticles, many synthesis methodologies as hydrothermal, solvothermal, electrothermal and co-precipitation method has been reported [9–12], in this methodologies, factor as the temperature, PH, concentration of the surfactant and reducing agents. However, this last mentioned are generally toxic and in general represent high costs to carry out the synthesis process. For this reason, the search for the development of new alternative synthesis routes, respectful of the environment, non-expensive and non-toxic, represents a nodal challenge in the development of new nanomaterials [13–17]. In the case of the magnetite nanoparticles has been widely studied due to their magnetic, catalytic and bio-compatibility properties [18]. The iron oxide nanoparticles have been employed as vectors for drug, magnetic resonance imaging contrast agents, for adsorption of antibiotics and heavy metal and degradation of organic dyes [19,20]. The degradation of organic pollutants from water can be focused in clean energy sources [10,21]. For this reason in nowadays the study of the catalytic properties of the oxides iron nanoparticles has attached much interest. In this sense, this work focuses on the attention to this problem through functional alternatives, which represent a low cost and friendly to the environment.

Many plants extracts have been employed and reported for the synthesis of Fe$_3$O$_4$ NPs, however, the proposed methodology is simple, economic and has not been reported [22,23]. On the other hand, Cynara cardunculus has multiple therapeutic and alimentary applications due to their great quantity of antioxidants presents in this plant [24].
Experimental procedure

Bio-synthesis of Fe₃O₄ nanoparticles

The Fe₃O₄ nanoparticles were synthesized starting to a mixture of ferric chloride and ferrous chloride in a 1:2 M ratio. The reducing agent employed was *cynara cardunculus* leaf extract with voucher specimen number 260583. The plant was obtained from Tarimbaro City, Mex. Briefly, a solution of [Fe (III)/Fe (II)] in aqueous solution at 50 mM was prepared in aqueous solution. On other hand, 5 gr of dried leaves of *cynara cardunculus* was milled and transferred to a 50 ml flask with 30 ml of deionized water. The *cynara cardunculus* was heated to 100 °C for 20 min. The infusion obtained was cooled at room temperature and mixed with 20 ml of [Fe (III)/Fe (II)] solution (50 mM). The PH associated with the reaction was adjusted to 11 through a solution of NaOH. A color change of the post-reaction mixtures from dark brown into black color was observed. This coloration change indicate the iron oxide formation.

Methylene blue degradation

The catalytic activity analysis of Fe₃O₄ NPs was carried out through the degradation of MB. The experiments were performed employed 3 mg of Fe₃O₄ NPs synthesized *cynara cardunculus* leaf extract. The initial concentration of MB was 30 mg L⁻¹. The MB degradation process was monitored by UV-vis in intervals of 5 min until the SPR of the organic dye disappeared.

Results and discussions

Scanning Electron Microscopy (SEM)

Fig. 1(a) shows the Fe₃O₄ nanoparticles obtained by green synthesis using *cynara cardunculus* leaf extract. In this image we can appreciated the Scanning Electron Microscopy (SEM) obtained by detection of secondary electrons (SE). The morphology observed is semi-spherical, several agglomerates can be appreciated. Several studies [26,27] describes this agglomeration as a stearic e

X-ray diffraction

Additionally, the structural characterization of the sample is fundamental to support the structure of the obtained nanoparticles. Fig. 2 shows an X-ray diffraction (XRD) pattern of the Fe₃O₄ NPs. Based on the intensities observed in the experimental X-Ray pattern, the symmetry associated was the structure of the Fe₃O₄ (Pm3m-325) according to the JCPDF# 96-900-5813. In order to calculate the crystallite size and strain, The Williamson-Hall method were carried out. Table 1 describe also the needed parameters for the W-H calculations. Following, the basic principles of the Williamson-Hall method are described in general form.

Table 1 display detailed the main parameter such as the diffraction angle and their miller index for each peak identified. This result show plenary, that the structure obtained is magnetite, due that the main intensities of the experimental pattern, can be indexed whit the JCPDF# 96-900-5813. In this sense we can affirm that the reduction of the Fe ions were carried out by the reducing agents presents on the *cynara cardunculus* leaf extract. In order to calculate the crystallite size and strain, The Williamson-Hall method were carried out. Table 1 describe also the needed parameters for the W-H calculations.

Following, the basic principles of the Williamson-Hall method are described in general form.

Williamson-Hall analysis

The crystallite and strain can be calculated by Williamson-Hall method, in general form this methodology implies the instrumental broadening (β) corrected for each diffraction peak by relation:

\[\beta_{4}^{2} = (\beta_{4})^{2}_{measured} - (\beta_{4})^{2}_{instrumental} \]

(1)

On the other hand the Debye-Scherer’s equation can be employed to calculate the average nanocrystallite size, which is described following:

\[D = \frac{\beta_{4}cos\theta}{\lambda} \]

(2)

Complementary, has been reported that the strain induced in powders associated to the crystallite defects is calculated by:

\[\varepsilon = \frac{\beta_{4}}{4tan\theta} \]

(3)

In this sense, W-H method incorporate the previous equations, given as result an expression to calculate the crystallize size and strain (Eq. (4)) from the broadening corrected and observed by the experimental X-Ray diffraction patter of Fe₃O₄ NPs.

\[\beta_{4}cos\theta = \frac{kl}{D} + 4\varepsilon tan\theta \]

(4)

Simplifying the previous equation, we have:

\[\beta_{4}cos\theta = \frac{kl}{D} + 4\varepsilon sen\theta \]

(5)

The above equations are known as the W-H expressions. Fig. 3 illustrate graphically, the results associated to the crystalize size and strain obtained from the Fe₃O₄ NPs synthesized by green route. The crystal size calculated was 13.5 nm.
Raman spectroscopy

In complementary form, the Raman spectrum of the Fe₃O₄ nanoparticles is presented in order to support the structural characterization by X-ray diffraction technique and identified the main phase present in the synthesized simple. Fig. 4 shows the Raman spectrum of the nanoparticles. Due to the magnetite possesses spinel symmetry, the expected vibrational modes of the first Brillouin zone center corresponding to this structure are given by Eq. (6) [24]:

$$\beta \cos \theta = \frac{k\lambda}{D} + 4\varepsilon \sin \theta$$

$$\gamma = 0.52E - 4X + 0.01107$$

In Fig. 4, we can identify the vibrational modes corresponding to the magnetite as principal phase. The typical vibrational mode associated to magnetite is situated at 667 cm⁻¹ which is the most pronunciation.

Table 1

<table>
<thead>
<tr>
<th>2θ (degrees)</th>
<th>d-spacing (Å)</th>
<th>hkl</th>
<th>FWHM (observed)</th>
<th>FWHM (corrected)</th>
<th>asymmetry</th>
<th>Areal asymmetry</th>
<th>integral breadth</th>
<th>Shape Factor (observed FWHM/integral breadth)</th>
<th>Size (nm) uncorrected</th>
<th>Size (nm) corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.44</td>
<td>4.807</td>
<td>111</td>
<td>0.5474</td>
<td>0.544</td>
<td>0.4924</td>
<td>0.833</td>
<td>0.521</td>
<td>1.052</td>
<td>16.3</td>
<td>16.4</td>
</tr>
<tr>
<td>30.24</td>
<td>2.9531</td>
<td>220</td>
<td>0.6196</td>
<td>0.6127</td>
<td>0.8033</td>
<td>0.7458</td>
<td>0.772</td>
<td>0.803</td>
<td>14.8</td>
<td>14.9</td>
</tr>
<tr>
<td>35.62</td>
<td>2.5185</td>
<td>311</td>
<td>0.6683</td>
<td>0.5897</td>
<td>0.7082</td>
<td>0.7273</td>
<td>0.764</td>
<td>0.797</td>
<td>15.2</td>
<td>15.5</td>
</tr>
<tr>
<td>37.1</td>
<td>2.4213</td>
<td>222</td>
<td>0.6638</td>
<td>0.5932</td>
<td>1.2275</td>
<td>1.0472</td>
<td>0.439</td>
<td>1.375</td>
<td>15.4</td>
<td>15.7</td>
</tr>
<tr>
<td>43.22</td>
<td>2.0916</td>
<td>400</td>
<td>0.6465</td>
<td>0.6312</td>
<td>0.93</td>
<td>1.6239</td>
<td>0.193</td>
<td>3.346</td>
<td>14.7</td>
<td>15</td>
</tr>
<tr>
<td>53.68</td>
<td>1.7061</td>
<td>422</td>
<td>0.7675</td>
<td>0.7485</td>
<td>0.7547</td>
<td>0.5042</td>
<td>0.634</td>
<td>1.12</td>
<td>12.9</td>
<td>13.2</td>
</tr>
<tr>
<td>57.16</td>
<td>1.6102</td>
<td>511</td>
<td>0.7687</td>
<td>0.7466</td>
<td>0.7964</td>
<td>0.9468</td>
<td>0.821</td>
<td>0.936</td>
<td>13.1</td>
<td>13.5</td>
</tr>
<tr>
<td>62.72</td>
<td>1.4802</td>
<td>440</td>
<td>0.7673</td>
<td>0.7386</td>
<td>1.1993</td>
<td>1.0458</td>
<td>0.884</td>
<td>0.868</td>
<td>13.5</td>
<td>14</td>
</tr>
<tr>
<td>64.06</td>
<td>1.4524</td>
<td>531</td>
<td>0.1186</td>
<td>0.1186</td>
<td>2.7933</td>
<td>1.7203</td>
<td>0.163</td>
<td>0.728</td>
<td>87.8</td>
<td>87.8</td>
</tr>
<tr>
<td>71.08</td>
<td>1.3252</td>
<td>620</td>
<td>0.4952</td>
<td>0.4203</td>
<td>1.351</td>
<td>1.8582</td>
<td>0.331</td>
<td>1.498</td>
<td>21.9</td>
<td>22.8</td>
</tr>
<tr>
<td>74.14</td>
<td>1.2779</td>
<td>533</td>
<td>1.1959</td>
<td>1.1689</td>
<td>0.8996</td>
<td>0.866</td>
<td>1.874</td>
<td>1.847</td>
<td>9.3</td>
<td>9.5</td>
</tr>
<tr>
<td>77.26</td>
<td>1.2339</td>
<td>444</td>
<td>0.4839</td>
<td>0.3833</td>
<td>0.2629</td>
<td>0.408</td>
<td>0.398</td>
<td>1.217</td>
<td>23.3</td>
<td>29.5</td>
</tr>
</tbody>
</table>
peak and correlated to the A_{1g} mode. The peaks located at 302 and 545 cm$^{-1}$ are also representatives of the Magnetite and attributed to the T_{1g} vibrational mode [28]. Additionally, the band associated to the magnetite and hematite phases are corroborated with Raman spectra obtained from the RRUFF Raman Mineral Spectra data base (University of Arizona). This Raman spectrum (Fig. 5a and b) indicates clearly the bans associated to the magnetite and hematite phases. Is important to note that the magnetite and hematite phases are presents in the experimental Raman spectrum, however, the majority phase observed is the magnetite. On the other hand, both phases are very similar from the point of view of the structure and the facile formation of both phases during the synthesis process is very common due to the facile interaction between the colloidal media and the iron oxide surface, promoting the oxidation of the samples. Nervesless, the green synthesis process offers a great route to obtaining magnetite NPs as majority phase, taking a count that there is not used any surfactant agent and the reducing agent employed (cynara cardunculus leaf extract) can be act in controlled form in comparison whit another reducing agents as for example the sodium borohydride (NaBH4), which is more active in their reducing capacity and toxic [29,30]. In this sense, dispense with a surfactant agent during the green synthesis process presented, favors the reduction of the ionic iron with a suitable reaction speed for the gradual formation of iron oxide phases. Giving as a result a green and functional methodology for obtaining magnetite.

In order to elucidate the organic compound presents on the cynara cardunculus leaf extract, Fig. 6(a) shows the UV–vis spectrum of the cynara cardunculus extract. In this image we can appreciate the typical SPR of the flavonoids, which are identified by two mains bands. The band (I) is associated to the flavonols with the hydroxyl group in the ring C3 (insert Fig. 6a) [24]. Has been reported that the typical flavonol presents in the Cynara cardunculus is the quercetin. On the other hand, the band (II) is associated to the flavones. The mentioned compounds are also identified in the cynara cardunculus as the catechine among others [31]. Has been widely reported that the flavonoids exhibits a great antioxidant activity and consequently, the hydroxyl groups can favors the reduction of the iron ions given as results the magnetite formation [25]. In order to support the results obtained by UV–vis, Fig. 6(b) describe the FT-IR spectrum of the cynara cardunculus extract. Intensities located at 3306 cm$^{-1}$ is attributed to the C–H stretching vibrations in the CH$_2$ groups identified on the aliphatic compound [25]. The bands at 1585 and 1398 and 1268 cm$^{-1}$ are associated to the aromatics compounds such as polysaccharides [24,25]. Finally, the band observed at 1094 cm$^{-1}$ can be associated to the aliphatic amines presents in the flavonoids identified by UV–vis spectroscopy. In this sense, the fully identifications of the organic species such as the flavonoid in the cynara cardunculus extract by UV–vis spectroscopy, allows to affirm that specifically the flavones and flavonols observed are responsible directly of the Fe ions reduction and consequently to the Fe$_3$O$_4$ NPs formation.

Theoretical adsorption kinetic models

The adsorption rate of MB observed was evaluated in terms of the four theoretical adsorption models, Pseudo first order, Pseudo second order, Elovich and intraparticle diffusion model. The first two models are expressed by Eqs. (7) and (8) [32].

$$\frac{dq}{dt} = K_1 (q_e - q_t)$$ \hspace{1cm} (7)

$$\frac{dq}{dt} = K_2 (q_e - q_t)^2$$ \hspace{1cm} (8)

where K_1 (min$^{-1}$) and K_2 (g mg$^{-1}$ min$^{-1}$) are the adsorption rate constants for pseudo first order and pseudo second order, respectively. Also, q_t and q_e represent the adsorption capacity at time t and in the equilibrium, respectively [33,34].

On the other hand, the Elovich or Roginsky and Zeldovich equation would be:

$$\frac{dq}{dt} = \alpha e^{-\beta q}$$ \hspace{1cm} (9)

Additionally, Intraparticle Diffusion Model was employed to elucidate the MB diffusion mechanism. The kinetic equation that governs this model is [35,36]:

![Graphs of Raman spectra](image)

Fig. 4. Raman spectrum of the Fe$_3$O$_4$ NPs synthesized by cynara cardunculus leaf extract.

![Graphs of Raman spectra](image)

Fig. 5. Raman spectra referenced to the (a) Magnetite and (b) Hematite phases.
In order to validate the MB concentration, a calibration curve of different concentration of MB solutions (5–50 g mL\(^{-1}\)) was obtained (Fig. 7). The \(R^2\) factor observed in this linear fit is 0.9753 which can be accurate for the subsequent measurements.

Fig. 8(a) shows the UV–vis spectrum associated to the Fe\(_3\)O\(_4\) NPs, MB and Fe\(_3\)O\(_4\)/MB at time \(t = 0\). In this image we can appreciate the typical intensity at 658 nm corresponding to the n–π* transition of MB \([37]\). However, the UV–Vis spectrum of the Fe\(_3\)O\(_4\) NPs, only exhibits a low intensity at 230 nm, which can be associated to the organic compounds, which are derivate of the green synthesis of the Fe\(_3\)O\(_4\) NPs. In this sense, Fig. 8(b) shows clearly the MB degradation by the Fe\(_3\)O\(_4\) NPs in a range of time of 80 min. The typical absorption band associated to the MB has been diminished and finally it disappeared after 80 min of reaction, which indicates that the degradation of Methylene blue dye occurs \([14]\).

In order to evaluate the kinetic adsorption model that describes in best form the MB degradation process, Fig. 9(a)–(d) illustrate the Pseudo first and second order model, the intraparticle diffusion and Elovich model, respectively.

Based on the experimental data obtained, the linear fit of the data were obtained. The correlation factor \(R^2\) calculated from each kinetic model, determinate the best approximation between the experimental data and the theoretical models. Table 2 indicate the kinetic parameter

\[
q_i = k_i \sqrt{t} + C_i
\]

(10)
In this sense, the Pseudo-second order model exhibits the highest value of R^2 (0.975). This value suggests that the MB degradation process follows a kinetic adsorption model of Pseudo second order. In this regard, several reports indicate that the exchange ionic and chemisorption process are associated to the pseudo-second order model [2]. In this sense, it is possible that the positive partial charges of the Fe$_3$O$_4$ can interact with the molecule of the MB. The particle size of the nanoparticle plays a significant role in the degradation process due that the smaller particles sizes promotes a larger potential difference between Fe$_3$O$_4$ NPs and MB and hence a higher catalytic activity.

In comparison with other methodologies to obtaining of Fe$_3$O$_4$ by green routes, the use of cynara cardunculus offer an efficient green route to obtaining Fe$_3$O$_4$ nanoparticles with high crystallinity degree and with homogeneous particle sizes. Is important to note that the particles obtained exhibits a great stability and the agglomerates formation is not observed. Additionally, the kinetic adsorption parameter calculated during the MB degradation process, indicate a competitive behavior respect to the catalytic properties reported for the Fe$_3$O$_4$ nanoparticles [37,38].

Conclusions

The synthesis of Fe$_3$O$_4$ NPs by cynara cardunculus was carried out. The antioxidant properties associated to the cynara cardunculus have the capacity to reduce the iron ions presents in the precursor solution. Additionally, the PH control of during the synthesis process take also a fundamental role in the iron reduction process. The magnetite structure was fully identified by X-ray diffraction technique and Raman spectroscopy. We can conclude that the synthesis conditions were adequate for the Fe$_3$O$_4$ NPs obtaining. However, the green synthesis by cynara cardunculus leaf extract offers an eco-friendly and non-toxic alternative to obtaining Fe$_3$O$_4$ NPs. On the other hand, the Fe$_3$O$_4$ NPs obtained shows a catalytic activity in the methylene blue degradation process. The MB degradation rate and the kinetic adsorption behavior is governed by the Pseudo- second order model (type 2) which describe an exchange ionic and chemisorption process between the positive partial charges of the Fe$_3$O$_4$ NPs and the molecule of the MB. Given has result the decomposition of the MB molecule and consequently the MB degradation. Finally, we can affirm that the Fe$_3$O$_4$ NPs synthesized by cynara cardunculus leaf extract have potential catalytic applications, particularly for water remediation containing this kind of organic dyes.

Conflict of interest

On behalf of all authors, the corresponding author states that there
is no conflict of interest.

Acknowledgment

Álvaro de Jesús Ruíz-Baltazar appreciates the support provided by the “Centro de Física Aplicada y Tecnología Avanzada” (National Materials Characterization Laboratory) in collaboration with CONACYT through “Cátedras CONACYT” program.

References