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Abstract

This article reports the optimization of film cooling on a leading edge of a gas turbine blade model, with showerhead

configuration, it is based on five input parameters, which are hole diameter, hole pitch, column holes pitch, injection

angle, and velocity at plenum inlet. This optimization increased the Area-Averaged Film Cooling Effectiveness �Aavð Þ and

reduced the consumption of coolant flow. Differential Evolution assisted by artificial neural networks was used as

optimization algorithm. Reynolds Averaged Navier–Stokes computations were carried out to getting the net database

and to evaluate the optimized models predicted by artificial neural network. The results show an effective increment of

�Aav by 36% and a mass flow reduction by 66%. These results were reached by means of a better distribution of cooling

flow at blade surface as function of the input parameters. To assure the reliability of the numerical model, particle image

velocimetry technique was used for its validation.

Keywords

Film cooling, gas turbine, differential evolution, artificial neural network, Reynolds Averaged Navier–Stokes, optimization

Date received: 28 July 2017; accepted: 23 January 2018

Introduction

Higher inlet temperatures are required to increase the
gas turbine power. However, this has a negative
impact on the turbine blades integrity, mainly in the
zone of the leading edge, which presents the most
exposition to the thermal loads. The film cooling is
a technique used to prevent damages on blades by
thermal loads. In this technique, air taken from com-
pressor is ejected through small holes placed on the
blade surface in order to avoid the contact between
the blade itself and the hot mainstream. The main
handicap of film cooling is the reduction of the gas
turbine output power because the usage of com-
pressed air. Then, the aim of an optimal film cooling
design is to get a good cooling performance with the
minimum amount of coolant air. The film cooling
performance is highly influenced by the flow charac-
teristics and geometric parameters of the cooling holes
such as diameter and injection angle.1 Experimental
and numerical investigations have been carried out to
study separately the effects of the mentioned param-
eters.2–6 Nevertheless, the study of parameters inter-
acting simultaneously to obtain a cooling optimum
design is a complicated task and for this reason new

computational tools are needed. Recently, optimiza-
tion methods have been implemented to obtain
objective and efficient evaluations of the performance
of industrial flows. Part of this research has been
focused on design shape optimization (DSO) of tur-
bomachinery components like film-cooled blades.

Evolutionary algorithms (EA) are optimization
methods based on the biological evolution and they
have proved to be reliable in the optimization of non-
linear process. EA are widely used in the optimization
of turbomachinery components.7–11 Verstraete et al.12

presented a study about the design of internal cooling
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channels of a gas turbine blade. The objective of their
research was to increase the blade lifetime reducing
the cooling mass flow consumption using genetic algo-
rithms (GA) as optimization method. The input vari-
ables were diameter of channels and its spatial
positions. Their results showed that the use of EA,
like GA, in the optimization procedure, increased
the blade lifetime limiting the cooling flow. A study
about the film cooling optimization of a turbine vane
pressure side was carried out by Johnson et al.13 They
used GA based on the geometrical parameters of cool-
ing holes. Their results showed a reduction of average
near-wall gas temperature of 2K and a reduction of
maximum heat flux of 2 kW/m2. Verstraete and Li14

realized the multi-objective optimization on a U-bend
in a serpentine internal cooling channels using
Differential Evolution (DE). Lee et al.15 performed
the optimization of a row of film cooling holes by
means of a Hybrid Multi-Objective Evolutionary
Algorithm. They defined two objectives functions,
one for increasing film cooling effectiveness and
another for reducing the aerodynamic losses. As sur-
rogated method, they used a Response Surface
Approximation. Nowak and Wróblewsky16 optimized
the cooling system of a turbine guide vane using GA.
They compared a Binary GA against Continuous GA.
They concluded that significant improvements of the
temperature reduction on the blade surface are
observed with the Continuous GA. Chi et al.17 per-
form a geometrical optimization of non-uniform
impingement cooling structure varying diameter jet
holes using GA. They found that the improvement
of overall cooling performance mainly relied on the
temperature reduction at pin-fin array. A more uni-
form temperature is obtained with a non-uniform
pin-fin array. El Ayoubi et al.18 carried out an aero-
thermal shape optimization of a double row of film
cooling holes on the suction side of a turbine vane.
Results showed that the optimization decreased the
aerodynamic losses and at the same time increased
cooling effectiveness.

The aim of this work is to increase the Area-
Averaged Film Cooling Effectiveness �Aav on a lead-
ing edge of a gas turbine blade model with a minimum
amount of coolant mass flow, using optimization
techniques combined with Reynolds Average
Navier–Stokes (RANS) computations. DE optimiza-
tion technique was employed as an algorithm to find
the optimal case. The input parameters were diameter
and angle of cooling holes, pitch between holes, pitch
between row of holes, and velocity of coolant at
plenum inlet. Objective function was evaluated by
means of artificial neural networks (ANN) trained
with a database based on a two levels full factorial
design of experiments. Optimal specimens (OS)
from DE are evaluated with three-dimensional
RANS computations; results are compared with
ANN predictions and stored in the existing database
to start a new analysis until it performs 20 DE runs.

RANS computations were validated in a low speed
tunnel with particle image velocimetry (PIV) measure-
ments. The final results have given evidence that for
an adequate �Aav, a reduction of coolant mass flow
was made possible by an optimization using DE
assisted with surrogated techniques like ANN and
RANS.

Methodology

Optimization strategy

Tools based on RANS, optimization algorithms and
ANN have been introduced to evaluate the perform-
ance of hydraulic structures and machinery, and these
provide a valuable complement to traditional engin-
eering methods. Parts of those tools have been
focused on optimizing the shape of turbomachinery
components.

In case of film cooling gas turbine blade, any opti-
mization method requires a large data set, which in
some cases could be obtained by a large number of
RANS computations. A large data set is necessary to
evaluate many different cases before reaching an OS
satisfying objective function. Although this procedure
allows to have the possibility of finding an efficient
film cooling area, it is expensive in terms of compu-
tational time due to the evaluation of the individual’s
fitness, which is the most time-consuming component
of the optimization. To highlight the advantages of
this methodology, Figure 1 presents a flowchart with
the steps proposed in order to find the best �Aav, redu-
cing the coolant flow. In the first step, different speci-
mens with defined configurations of the input

Figure 1. Optimization methodology.
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parameters were established through a two-level full
factorial design of experiments. Every single specimen
configuration was stated using geometrical and flow
parameters. Four geometrical parameters (hole diam-
eter, ejection angle, column pitch, and hole pitch) and
one flow parameter (velocity) were considered. A set
of 33 specimens (NDB¼ 33) were generated according
with the design of experiment and then they were
evaluated using RANS computations. In this way, it
was gotten a complete database for the 33 combin-
ations of variables (specimens) and its respective �Aav
computations and cooling flow were obtained. RANS
computations were validated using PIV measurements
in an additional specimen.

As next step, theANNwas trained using the data set
obtained by RANS computations and an ANN model
to predict the cooling effectiveness and cooling flow
was generated. This model was used for the DE algo-
rithm to evaluate the objective function and to obtain
the design variables for the optimal film cooling per-
formance. The objective function was evaluated
quickly by the ANN, but due to the database size,
this prediction could be wrong and a final verification
of the optimized variables for the best film cooling per-
formance is needed by means of the RANS solver.
These results are added to a database to increase its
size and the prediction capability of ANN. This pro-
cedure was repeated through 20 iterations (It¼ 20).

Objective function definition

To find an optimum case using an EA, it is necessary
to state an objective function, as follows

FobjðVÞ ¼ w�F �Aavð Þ þ w _mF _mð Þ ð1Þ

This is a mathematical function, which in the case
of gas turbine film cooling, should find the best Area-
Averaged Film Cooling Effectiveness �Aavð Þ, while the
consumption of coolant flow ( _m) is decreased. In the
case of cooling gas turbine blades, the coolant flow
should be decreased because affect total power and
efficiency of gas turbine cycle.

Fobj (V) contains the five input parameters defined
as design variables. The first term of the right F �Aavð Þ

is the �Aav objective, which has a weight of w� ¼ 0:7 ,
which declares its importance in the equation. The
�Aav objective is the difference between a defined cool-
ing effectiveness target and the cooling effectiveness
calculated in function of the vector of variables.
The effectiveness target �tar was set to 1, this means
that the value of the difference could never be less
than zero

F �Aavð Þ ¼ �tar � �Aav Vð Þ ð2Þ

The second term of equation (1), F _mð Þ, represents
the cooling flow objective and it has a weight of
w _m ¼ 0:3, which establishes the importance of F _mð Þ

and is computed with equation (3) during the opti-
mization process

F _mð Þ ¼
_m Vð Þ � _mtar

_mtar
ð3Þ

where _m Vð Þ is the cooling mass flow, whereas the
mass flow target _mtar was set to 1� 10�5kg/s.

The �Aav is defined by equation (4)

�Aav ¼
1

A

Z Z
�dA ð4Þ

where A is the film cooling area and � is the adiabatic
effectiveness, which is defined by

� ¼
Tm � Taw

Tm � Tc
ð5Þ

here Taw is the adiabatic temperature, Tm is the main-
stream temperature, and Tc is the coolant temperature
at the exit of cooling hole.

At plenum inlet, the amount of coolant mass flow
is defined by

_m ¼ nM�mvmAc ð6Þ

where n is the number of cooling holes, M ¼ �cvc
�mvm

is a
given blowing ratio, � and v are density and velocity
of mainstream, respectively, and Ac is the area of
cooling holes.

DE optimization method

DE is an evolutionary optimization method devel-
oped by Storn and Price.19 The main objective of
DE is to find an individual that minimizes a defined
objective function. This method proceeds through
three genetic operators: mutation, recombination,
and selection. In this way, a population is randomly
generated in which each individual is represented
by a vector. These vectors consist mostly out of
input parameters that define every case of study.
From this population, a vector is selected,
X g

t ¼ X1,X2,X3, . . .Xnð Þ, where g is the number of
generation and t is the number of vector. Three add-
itional vectors pgt , q

g
t , r

g
t , are chosen, so that they are

different to X g
t . A new trial vector is generated in the

mutation process, which is defined by

Y g
t,i ¼ p g

t,i þ F q g
t,i þ r gt,i

� �
i ¼ 1 . . . n ð7Þ

where n is the vector length and F 2 0, 1½ � is a scale
factor. In the recombination process, a vector Z gþ1

t is
obtained using X g

t and Y g
t . This process is defined by

Z gþ1
t,i ¼

Y g
t,i ri 5C

X g
t,i ri5C

(
ð8Þ
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where ri is a random number between 0 and 1 and C is
a crossover rate parameter. Finally, the resulting new
vector Z gþ1

t will replace the vector X g
t , in a new gen-

eration, only if its fitness values have been improved,
otherwise the vector X g

t will pass to the next gener-
ation without changes. This procedure is repeated
until the population of the new generation is
completed.

For the optimization of �Aav in this work, DE
was applied through 300 generations with a popula-
tion of 50 specimens. The scale factor and the cross-
over rate parameter were set to 0.4 and 0.8,
respectively.

ANN

ANN was used as method to evaluate the objective
function replacing the RANS solver. ANN is an inter-
polator tool that can be used to solve a variety of
tasks like classification, regression, estimation prob-
lems, etc. The net is formed by layers composed of
neurons: one input layer, one or more hidden layers,
and one output layer. Each layer is linked with the
subsequent layer by means of weighted connections.
Between input and hidden layer, a weighted sum of
inputs and a bias are made; the result of this sum is
used as argument for the transfer function to obtain
the output of the hidden layer

Oout ¼ g !outf !inink þ b1sð Þ þ b2l½ � ð9Þ

where f and g are the transfer functions for hidden
and output layer, respectively, !o is the weight of
output layer, in are the net inputs, b1 and b2 are the
bias of hidden layer and output layer, respectively;

k, s, and l are the number of neurons in input
layer, hidden layer, and output layer, respectively.
In this work, hyperbolic tangent sigmoid (equa-
tion (10)) and linear (equation (11)) were the transfer
functions for the hidden and the output layer,
respectively

f ¼
2

1þ e 2� !in�inkþb1sð Þ½ �
� 1 ð10Þ

g ¼ !out � f þ b2l ð11Þ

Two ANN models were constructed, first to predict
the �Aav and second to predict the mass flow consump-
tion. The database was divided into training and val-
idation sets each of one contains 80% and 20%,
respectively, of database size. Both models contain
three layers with five neurons in the input layer,
four neurons in the hidden layer, and one neuron in
the output layer. The number of neurons in the
hidden layer was selected based on the ANN perform-
ance that was evaluated by the root mean square error
(RMSE; Figure 2(a)). The net architecture for �Aav
predictions is shown in Figure 2(b). The adjustment
of weights and biases was made using the Levenberg–
Marquardt training algorithm, one of the training
algorithms recommended for networks of moderate
size.20 Comparison of �Aav predicted with ANN
versus �Aav predicted with RANS during training
and validation is presented in Figure 3(a). In addition,
in Figure 3(b), five new RANS simulations were per-
formed to test the ANN obtaining a RMSE¼ 0.0102.
These results assure a good correlation between ANN
and RANS.

Figure 2. Construction of ANN: (a) Selection of hidden neurons based in RMSE and (b) ANN architecture.

ANN: artificial neural networks; RMSE: root mean square error.
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Description of experimental rig

RANS computations were used in the generation of
database and in the comparison of the optimized
models obtained with surrogated methods. To valid-
ate RANS computations, experimental measurements
were carried out in a low speed wind tunnel with a test
section with dimensions of 0.5� 0.5� 0.25 m3. Using
the PIV technique, flow field was measured in zones
around the leading edge. The configuration of the
experimental array is presented in Figure 4(a). Air
from the exterior is suctioned by an axial fan and it
is delivered to wind tunnel with a velocity of 10m/s.
In a seeding box, tracer particles generated by a fog

machine are seeded in the air from a compressor. The
flow seeded is distributed into the plenum chamber
and into the wind tunnel, where it is mixed with the
mainstream flow. To control velocity and temperature
at plenum inlet, a hot wire probe was placed at this
location. The leading edge specimen (Figure 4(b)) rep-
resents the leading edge of a gas turbine blade, and it
consists of a semi-circular body and flat after body.
The model has one row of five cooling holes at stag-
nation line and two rows of four cooling holes at each
side of the stagnation line. The rows are separated 30�

between them. Diameter of cooling holes is 2mm. The
supply plenum is cylindrical and it has a diameter of
12.70mm and a length of 95mm. Pitch between holes
is 10mm. The semi-circular chord has a length c equal
to 125 mm.

The PIV equipment used in this work was a
laser Nd:YAG with double cavity laser. Dimensions
of the target area and the interrogation area
were 105� 80mm2 and 64� 64 pixels, respectively.
Interval time between laser pulses was 3.3ms with an
error estimation of less than 5%. The sampling fre-
quency was 10Hz. Images were acquired with a CCD
camera, which has a spatial resolution of
128� 102.4mm2. Distance between camera and zone
of interest was about 1m. Laser and camera were
synchronized by a Dantec System Hub. Fog particles
of 1–5 microns of diameter were seeded in the flow by
a fog generator inside a Plexiglas box.

RANS model

RANS computations were carried out to generate ini-
tial database population and later to verify the com-
puted �Aav using ANN surrogate model of the best

Figure 4. Schematic representation of the experimental setup (a) and detailed view of the leading edge model (b).

Figure 3. RANS and ANN comparison during (a) training

and validation, and (b) five new tests.

ANN: artificial neural networks; RANS: Reynolds Average

Navier–Stokes.
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specimens proposed by DE Optimization algorithm.
The numerical domain, of the test section, consists of
three zones: mainstream flow, plenum flow, and a
solid zone that represents the leading edge model.
Velocity inlet was set as boundary condition at main-
stream inlet and at plenum inlet, whereas pressure
outlet condition was used for the domain outlet.
The boundary condition for leading edge wall was
adiabatic and a no-slip condition was considered.
Both domains and boundary conditions are presented
in Figure 5.

RNG �� � model was used to solve the turbulence
during RANS computations.21 For the spatial discret-
ization, the second-order up-wind scheme was
employed, whereas pressure and velocity were coupled
by means of SIMPLEC algorithm. For continuity,
momentum and turbulence, the convergence criterion

was set at 1� 10�5 and, for the energy equation, it
was 1� 10�8. For this analysis, a structured mesh
with hexahedral elements was used. Two views of
the meshed computational domain are shown in
Figure 6(a). The mesh size was defined based on an
independence grid study, where the temperature pro-
file between two cooling holes on blade wall was
monitored. For the independence grid study, four
meshes were used (Figure 6(b)). The difference
between the temperature profiles computed with the
meshes of 3,532,144 and 4,290,868 cells was 0.28%.
For this reason and with the purpose of reducing the
computational cost, the mesh selected for this
research was the mesh with 3,532,144 elements with
0.1< yþ< 1.

Generation of database

To create database, using the validated RANS
model, 33 additional simulations were performed
based on a full factorial two levels DOE. In order to
accelerate the optimization process, a Matlab code
was generated to create the geometry of specimens,
to mesh the domain and to launch the RANS
solver. The lower and upper ranges of input param-
eters for these simulations are listed in Table 1.

Figure 6. Details of discretized model: (a) mesh and (b) independence grid study.

Figure 5. Location of (a) boundary conditions and (b) com-

putational domains.

Table 1. Levels of the input parameters.

Parameter Upper Lower

Hole pitch (mm) 3 9

Column pitch (mm) 3 6

Diameter (mm) 0.6 1.3

Angle (�) 25 35

Velocity (m/s) 0.175 1.5

6 Proc IMechE Part G: J Aerospace Engineering 0(0)



The lower and upper range of velocity magnitudes
correspond to blowing ratios of M¼ 0.5 and M¼ 2,
respectively. In DOE, the parameters can assume
two values, low and high, that belong to the 25%
and 75% of the range. The number of specimens
was defined by 2n, where 2 represents two levels and
n is the quantity of parameters involved. For this
research, the number of specimens was 32 plus an
additional specimen with all the parameters with
average values. In all cases, the temperature ratio
Tc/Tm was equal to 0.5.

Results

Validation

The experimental and numerical results were com-
pared at four profiles (P1, P2, P3, P4) separated 5�

between them, these profiles were located at the vicin-
ity of leading edge (Figure 7). The profiles are
extended following the stagnation line, from the exit
middle hole of first row to mainstream. Each profile
has a length l¼ 4 cm. The comparison was carried out
under a blowing ratio of M¼ 0.5.

Results of velocity profiles comparison are pre-
sented in Figure 8. In order to dimensionless the pro-
files, its length (l) were divided by the cooling hole
diameter D. It is observed that there is a good
match between the RANS and the experimental
results. Discrepancies appears downstream from the
film cooling zone (l/D< 5) due to fluctuations of the
incoming air and to the PIV spatial discretization,
which is too large and cannot be to capture data
near the blade surface, but the overall prediction pre-
sents a good agreement. An error about 10% between
measured and predicted profiles was calculated by
means of mean square error.

The validation of temperature was presented by
Dávalos et al.22 for the same model and using the
same RANS methodology. Thermocouples were
placed over surface blade to monitoring the distribu-
tion of the temperature. Results showed a prediction
error about 3% at stagnation line of cooling holes and
about 6% at lateral cooling holes.

Figure 8. Comparison of RANS and PIV velocity profiles P1, P2, P3, and P4.

RANS: Reynolds Average Navier–Stokes; PIV: particle image velocimetry.

Figure 7. Location of profiles used to compare RANS and

PIV results.

RANS: Reynolds Average Navier–Stokes; PIV: particle image

velocimetry.
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Optimization results

DE was used as optimization method to improve the
�Aav on a gas turbine blade model with a minimal
amount of coolant mass flow. The ANN surrogate
method acted as the evaluator of objective function.
The optimization was carried out through 20 iterations
in which the objective function for the new specimens
was evaluated using the ANN and such evaluation
was compared with RANS calculations and the

optimized specimen was added to database to increase
its accuracy.

The objective function, Area-Averaged Film
Cooling Effectiveness �Aavð Þ and cooling mass flow
were computed by RANS and ANN, during the DE
optimization process (Figure 9). In the first iterations,
the results predicted with ANN did not match cor-
rectly with the RANS results; however, after the iter-
ation 8, the ANN learning was improved due to
enrichment of database and a good prediction of the
objective function was obtained. After this point, min-
imal changes were observed in the value of objective
function remaining between 1.05 and 1.06.

Figure 10 shows the values of Fobj, �Aav , and F _mð Þ
for the initial database specimens (NDB), for the spe-
cimens (DE) found trough the DE optimization and
for the OS found during the optimization process. The
values of �Aav and F _mð Þ were improved considerably
by DE. Some of the first 33 specimens had a better
�Aav than the optimized ones, however their consump-
tion of mass flow were higher.

The values of the objective function, �Aav and mass
flow consumption of the OS are presented in Table 2.
The best specimen of the initial set of 33, referred now
as ODB, was added to Table 2 to compare the
changes occurred through the optimization
process. The OS had an objective function 60%
lower than in the case of ODB. In addition, the �Aav
increased 36.41%, whereas mass flow was reduced
around 65%.

Figure 10. Comparison of optimized specimens vs. initial database specimens.

Figure 9. Objective function Fobj

� �
, Area-Averaged Film

Cooling Effectiveness �Aavð Þ, and cooling mass flow ( _m) com-

puted by RANS and ANN during the optimization process.

RANS: Reynolds Average Navier–Stokes; ANN: artificial neural

networks.
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The input variables values of the optimized speci-
men and the specimen from initial database are shown
in Table 3. The results indicate that values of both
hole pitch and column pitch are near to their lowest
range, this means that an improvement in �Aav can be
gotten reducing the distance between holes and hole
columns at leading edge. On the other hand, the hole
diameter was close to upper range. Because of the
magnitude of injection angle did not show a defined

trend, it can be assumed that this parameter had a
small influence in film cooling. The velocity at
plenum inlet took values close to its lowest range;
this corresponds to a reduction of mass flow con-
sumption owing to the relationship between them.

In Figure 11, contours of film cooling effectiveness
for the OS and ODB are presented. There is a remark-
able difference between the hole diameters size and its
location. Another change is the reduction of pitch
hole, which also causes that the area between holes
diminishes. For the OS, the cooling flow discharge
covers better the blade surface than the ODB speci-
men because of the smaller area. Comparing both film
cooling effectiveness contours, it is observed the
reduction of zones with poor coverage for the OS,
like in the space between holes of the lateral columns.
The reduction of these hot points diminishes the risk
of high thermal gradients and consequently the ther-
mal stresses could be also reduced. The direction of
wakes of the film cooling jets differs as consequence of
changes in the geometry of the OS; in the model with-
out optimization the jet is deflected to the spanwise
direction, whereas in the improved one, the jet follows
the streamwise direction.

Figure 12 depicts the film cooling effectiveness pro-
files at the first hole of the lateral column and at
middle hole of the stagnation line column. In both
graphs downstream of hole, film cooling was consid-
erably improved due to a better coverage of cooling
flow at leading edge. It is at the lateral column where
the difference between the OS and the ODB specimen
is higher.

Figure 11. Comparison of film cooling effectiveness at leading edge between OS (a) and ODB (b).

OS: optimal specimen; ODB: best specimen of the initial database.

Table 3. Geometrical characteristics for OS and ODB.

OS ODB

Hole pitch (mm) 3.007 4.5

Column pitch (mm) 3.517 3.75

Diameter (mm) 1.275 0.7

Injection angle (�) 35.468 33

Velocity (m/s) 0.175 0.506

ODB: best specimen of the initial database; OS: optimal specimen.

Table 2. Objective function, ZAav, and mass flow of OS vs.

ODB.

Fobj �Aav _m

ODB 2.6399 0.1697 7.839� 10�5

OS 1.0559 0.2315 2.726� 10�5

ODB: best specimen of the initial database; OS: optimal specimen.

Garcı́a et al. 9



Conclusions

In this research, a DE optimization algorithm was
applied to improve the Area-Averaged Film Cooling
Effectiveness with a minimum amount of coolant air
from compressor. In addition to DE, the optimization
methodology included ANN and the RANS compu-
tations. The ANN was used as surrogated method to
evaluate the fitness that allows to reduce the compu-
tational costs of the RANS computations. The OS
had an increase of the cooling effectiveness about
36% and a mass flow reduction about 65% with
respect to the ODB. The geometrical characteristics
of the OS showed that reducing the area between
holes, by means of short hole pitch and short
column pitch, the cooling of leading edge is increased.
Also, a big diameter film cooling hole presented a
better distribution of coolant, reducing zones without
good film cooling and providing a more uniform tem-
perature avoiding thermal gradients in leading edge
surface. Thus, this method optimized the cooling
effectiveness and could be used in the design of film
cooling of gas turbine blades.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of

this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication
of this article: National Council of Science and
Technology (CONACYT), Projects 206393 and 280878.

References

1. Bogard DG and Thole KA. Gas turbine film cooling.
J Propul Power 2006; 22: 249–270.

2. Sangan CM, Zhou K, Litherland K, et al. Thermal ima-

ging as flow visualization for gas turbine film cooling.
Proc IMechE, Part G: J Aerospace Engineering 2011;
225: 417–431.
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Appendix

Notation

A area
b ANN bias
c semi-circular chord length
C crossover rate parameter
D diameter
f, g hyperbolic tangent sigmoid functions,

linear function
F differential evolution scale factor
in ANN inputs
l profile length
_m air mass flow
M blowing ratio
n number of cooling holes

O ANN output
p, q, r differential evolution vectors
r random number
T temperature
v velocity
V design vector
w�, w _m importance weights
X, Y, Z differential evolution vectors
yþ y plusFigures 2, 6, 7 and 10 are poor

quality images, please provide the better
quality figures.

� cooling effectiveness
� density
! ANN weights

Subscripts

aw adiabatic wall
Aav area averaged
c coolant
in input layer
k number of neurons in input layer
l number of neurons in output layer
m mainstream
n vector length
obj objective
out output layer
s number of neurons in hidden layer
t number of vector
tar target

Superscripts

g number of generation
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